Skip to main content

Non-intrusive Haptic Interfaces: State-of-the Art Survey

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7989)

Abstract

Haptic rendering technologies are becoming a strategic component of the new Human-Machines Interfaces. However, many existing devices generally operate with intrusive mechanical structures that limit rendering and transparency of haptic interaction. Several studies have addressed these constraints with different stimulation technologies. According to the nature of contacts between the device and the user, three main strategies were identified. This paper proposes to detail them and to highlight their advantages and drawbacks.

Keywords

  • haptic interface
  • intrusive device
  • workspace
  • stimulation strategies

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-41068-0_1
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-41068-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bordegoni, M., Cugini, U., Belluco, P., Aliverti, M.: Evolution of a haptic-based interaction system for virtual manual assembly. In: Proceedings of the 3rd International Conference on Virtual and Mixed Reality, Berlin, Heidelberg, pp. 303–312 (2009)

    Google Scholar 

  2. Broeren, J., Georgsson, M., Rydmark, M., Sunnerhagen, K.: Virtual reality in stroke rehabilitation with the assistance of haptics and telemedicine. In: Proc. 7th ICDVRAT with ArtAbilitation, Maia, Portugal (2008)

    Google Scholar 

  3. Sourina, O., Wang, Q., Nguyen, M.K.: EEG-based Serious Games and Monitoring Tools for Pain Management. In: Proc. MMVR 18, Newport Beach, California, vol. 8(12), pp. 606–610 (February 2011)

    Google Scholar 

  4. Bai, M.R., Tsai, Y.K.: Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach. J. Acoust. Soc. Am. 129(3), 1297–1305 (2011)

    CrossRef  Google Scholar 

  5. Senseg, electrostimulation (2011), http://senseg.com/technology/

  6. iPhone Haptics, Google Code Page, University of Glasgow, http://code.google.com/p/iphonehaptics/ (accessed August 29, 2010)

  7. Hayward, V., Astley, O.R.: Performance measures for haptic interfaces. In: Robotics Research: The 7th International Symposium, pp. 195–207. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  8. Hayward, V., Astley, O.R., Cruz-Hernandez, M., Grant, D., Robles-De-La-Torre, G.: Haptic interfaces and devices. Sensor Review 24(14), 16–29 (2004)

    CrossRef  Google Scholar 

  9. CyberTouch (2010), http://www.estkl.com/products/datagloves/cyberglovesystems/cybertouch.html

  10. Anderson, T., Breckenridge, A., Davidson, G.: FGB: A Graphical and Haptic User Interface For Creating Graphical, Haptic User Interfaces, Sandia National Laboratories (1999)

    Google Scholar 

  11. Kim, S.C., Kim, C.H., Yang, T.H., Yang, G.-H., Kang, S.C., Kwon, D.S.: SaLT: Small and Lightweight Tactile Display Using Ultrasonic Actuators. In: Proc. 17th IEEE Int’l Symp. Robot and Human Interactive Comm. (RO-MAN 2008), pp. 430–435 (2008)

    Google Scholar 

  12. Stone, R.J.: Haptic Feedback: A Potted History, From Telepresence to Virtual Reality, MUSE Virtual Presence, Chester House, UK (2001)

    Google Scholar 

  13. Hirota, K., Hirose, M.: Surface Display: Concept and Implementation Approaches, ICAT/VRST. In: Int. Conf. on Artificial Reality and Tele-Existance, Japan, pp. 185–192 (1995)

    Google Scholar 

  14. Sato, K., Minamizawa, K., Kawakami, N., Tachi, S.: Haptic telexistence. In: ACM SIGGRAPH 2007 Emerging Technologies, New York, Article 10 (2007)

    Google Scholar 

  15. Drif, A., Citerin, J., Kheddar, A.: A multilevel haptic display design. In: 2004 IEEERSJ International Conference on Intelligent Robots and Systems IROS IEEE Cat No04CH37566, vol. 4, pp. 3595–3600 (2004)

    Google Scholar 

  16. Bordegoni, M., Ferrise, F., Covarrubias, M., Antolini, M.: Haptic and sound interface for shape rendering. In: Presence: Teleoperators and Virtual Environments, vol. 19(4), pp. 341–363. The MIT Press (August 2010)

    Google Scholar 

  17. Overholt, D., Pasztor, E., Mazalek, A.: A Multipurpose Array of Tactile Rods for Interactive sXpression, Technical Application, SIGGRAPH (2001)

    Google Scholar 

  18. Bianchi, M., Gwilliam, J.C., Degirmenci, A., Okamura, A.M.: Characterization of an Air Jet Haptic Lump Display. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2011)

    Google Scholar 

  19. Tsalamlal, M.Y., Ouarti, N., Ammi, M.: Psychophysical study of air jet based tactile stimulation. In: IEEE World Haptics Conference (accepted, 2013)

    Google Scholar 

  20. Inoue, K., Kato, F., Lee, S.: Haptic device using flexible sheet and air jet for presenting virtual lumps under skin. In: Proc. IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 1749–1754 (2009)

    Google Scholar 

  21. Iwamoto, T., Tatezono, M., Shinoda, H.: Non-Contact Method for Producing Tactile Sensation Using Airborne Ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  22. Suzuki, Y., Kobayashi, M.: Air jet driven force feedback in virtual reality. IEEE Computer Graphics and Applications, 44–47 (2005)

    Google Scholar 

  23. Xu, Y., Hunter, I.W., Hollerbach, J.M., Bennett, D.J.: An air jet actuator system for identification of the human arm joint mechanical properties. IEEE Transactions on Biomedical Engineering 38, 1111–1122 (1991)

    CrossRef  Google Scholar 

  24. Romano, J.M., Kuchenbecker, K.J.: The AirWand: Design and Characterization of a Large-Workspace Haptic Device. In: Proceedings, IEEE International Conference on Robotics and Automation, pp. 1461–1466 (May 2009)

    Google Scholar 

  25. Gurocak, H., Jayaram, S., Parrish, B., and Jayaram, U.: Weight Sensation in Virtual Environments Using a Haptic Device With Air Jets. Presented at J. Comput. Inf. Sci. Eng., 130–135 (2003)

    Google Scholar 

  26. Hoshi, T., Takahashi, M., Iwamato, T., Shinoda, M.: Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound. IEEE Transactions on Haptics 3(3), 155–165 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsalamlal, M.Y., Ouarti, N., Ammi, M. (2013). Non-intrusive Haptic Interfaces: State-of-the Art Survey. In: Oakley, I., Brewster, S. (eds) Haptic and Audio Interaction Design. HAID 2013. Lecture Notes in Computer Science, vol 7989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41068-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41068-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41067-3

  • Online ISBN: 978-3-642-41068-0

  • eBook Packages: Computer ScienceComputer Science (R0)