Advertisement

Perceptual and Technological Issues in the Design of Vibrotactile-Augmented Interfaces for Music Technology and Media

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7989)

Abstract

In this paper we present tactile feedback and stimulation design principles for applications in music technology and media. We discuss features and limitations of the human sense of touch, in the context of conveying musical content solely via the tactile sense. These factors should be firmly taken into account when designing a tactile-augmented interface. Applications of tactile displays in the field of music and media are then presented using a three-fold taxonomy of tactile feedback.

Keywords

haptics vibrotactile feedback vibrotactile stimulation sensory substitution music technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miranda, E.R., Wanderley, M.M.: New Digital Musical Instruments: Control and Interaction beyond the Keyboard. The Computer Music and Digital Audio Series. A-R Editions (2006)Google Scholar
  2. 2.
    Wanderley, M.M.: Gestural control of music. Proceedings of the IEEE (2001)Google Scholar
  3. 3.
    Marshall, M.T.: Physical Interface Design for Digital Musical Instruments. Doctoral thesis, McGill University (2008)Google Scholar
  4. 4.
    Keele, S.W.: Attention and Human Performance. Goodyear Pub. Co. (1973)Google Scholar
  5. 5.
    Puckette, M., Settel, Z.: Nonobvious roles for electronics in performance enhancement. In: Proceedings of the International Computer Music Conference, p. 134 (1993)Google Scholar
  6. 6.
    MacLean, K.E.: Designing with haptic feedback. In: Proceedings of the International Conference on Robotics and Automation (ICRA), vol. 1, pp. 783–788. IEEE (2000)Google Scholar
  7. 7.
    Giordano, M., Wanderley, M.M.: A Learning Interface For Novice Guitar Players Using Vibrotactile Stimulation. In: Proceedings of the Sound and Music Computing Conference, SMC (2011)Google Scholar
  8. 8.
    Michailidis, T., Berweck, S.: Tactile Feedback Tool: Approaching the Foot Pedal Problem in Live Electronic Music. In: Proceedings of the Internation Computer Music Conference, ICMC (2011)Google Scholar
  9. 9.
    Karam, M., Russo, F.A., Fels, D.I.: Designing the model human cochlea: An ambient crossmodal audio-tactile display. IEEE Transactions on Haptics 2(3), 160–169 (2009)CrossRefGoogle Scholar
  10. 10.
    Vallbo, Å.B., Johansson, R.S.: Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Human Neurobiology 3(1), 3–14 (1984)Google Scholar
  11. 11.
    Verrillo, R.T.: Vibration sensation in humans. Music Perception 9(3), 281–302 (1992)CrossRefGoogle Scholar
  12. 12.
    Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology 11(4), 455–461 (2001)CrossRefGoogle Scholar
  13. 13.
    Choi, S., Kuchenbecker, K.J.: Vibrotactile Display: Perception, Technology, and Applications. Proceedings of the IEEE, 1–12 (2012)Google Scholar
  14. 14.
    Makous, J.C., Friedman, R.M., Vierck, C.J.: A critical band filter in touch. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 15(4), 2808–2818 (1995)Google Scholar
  15. 15.
    Birnbaum, D.M., Wanderley, M.M.: A systematic approach to musical vibrotactile feedback. In: Proceedings of the Internation Computer Music Conference, ICMC (2007)Google Scholar
  16. 16.
    Fletcher, H., Munson, W.A.: Loudness, Its Definition, Measurement and Calculation. The Journal of the Acoustical Society of America 5(2), 82–108 (1933)CrossRefGoogle Scholar
  17. 17.
    Verrillo, R.T.: Vibrotactile Thresholds for Hairy Skin. Journal of Experimental Psychology 72(1), 47–50 (1966)CrossRefGoogle Scholar
  18. 18.
    Rovan, J., Hayward, V.: Typology of tactile sounds and their synthesis in gesture-driven computer music performance. In: Wanderley, M.M., Battier, M. (eds.) Trends in Gestural Control of Music, pp. 297–320 (2000)Google Scholar
  19. 19.
    Branje, C., Maksimouski, M., Karam, M., Fels, D.I., Russo, F.: Vibrotactile Display of Music on the Human Back. In: Third International Conference on Advances in Computer-Human Interactions, pp. 154–159. IEEE (2010)Google Scholar
  20. 20.
    Morley, J.W., Rowe, M.J.: Perceived Pitch of Vibrotactile Stimuli: Effects of Vibration Amplitude, and Implications for Vibration Frequency Coding. Journal of Physiology 431, 403–416 (1990)Google Scholar
  21. 21.
    Goble, A.K., Hollins, M.: Vibrotactile adaptation enhances frequency discrimination. The Journal of the Acoustical Society of America  96(2 pt. 1), 771–780 (1994)Google Scholar
  22. 22.
    Harris, J.A., Harris, I.M., Diamond, M.E.: The topography of tactile learning in humans. The Journal of Neuroscience 21(3), 1056–1061 (2001)Google Scholar
  23. 23.
    Kosonen, K., Raisamo, R.: Rhythm perception through different modalities. In: Proceedings of Eurohaptics, pp. 365–370 (2006)Google Scholar
  24. 24.
    Jokiniemi, M., Raisamo, R., Lylykangas, J., Surakka, V.: Crossmodal Rhythm Perception. In: Pirhonen, A., Brewster, S. (eds.) HAID 2008. LNCS, vol. 5270, pp. 111–119. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Brown, L.M., Brewster, S.A., Purchase, H.C.: A First Investigation into the Effectiveness of Tactons. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 167–176 (2005)Google Scholar
  26. 26.
    Weisenberger, J.M.: Sensitivity to amplitude-modulated vibrotactile signals. The Journal of the Acoustical Society of America 80(6), 1707–1715 (1986)CrossRefGoogle Scholar
  27. 27.
    Park, G., Choi, S.: Perceptual space of amplitude-modulated vibrotactile stimuli. In: 2011 IEEE World Haptics Conference, pp. 59–64 (June 2011)Google Scholar
  28. 28.
    Russo, F.A., Ammirante, P., Fels, D.I.: Vibrotactile discrimination of musical timbre. Journal of Experimental Psychology. Human Perception and Performance 38(4), 822–826 (2012)CrossRefGoogle Scholar
  29. 29.
    Cholewiak, R.W., Brill, J.C., Schwab, A.: Vibrotactile localization on the abdomen: effects of place and space. Perception & Psychophysics 66(6), 970–987 (2004)CrossRefGoogle Scholar
  30. 30.
    Cholewiak, R.W., Collins, A.A.: Vibrotactile localization on the arm: effects of place, space, and age. Perception & Psychophysics 65(7), 1058–1077 (2003)CrossRefGoogle Scholar
  31. 31.
    van Erp, J.B.F.: Vibrotactile Spatial Acuity on the Torso: Effects of Location and Timing Parameters. In: Proceedings of Eurohaptics, pp. 80–85. IEEE (2005)Google Scholar
  32. 32.
    Piateski, E., Jones, L.: Vibrotactile Pattern Recognition on the Arm and Torso. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 90–95. IEEE (2005)Google Scholar
  33. 33.
    Gallace, A., Tan, H.Z., Spence, C.: Numerosity judgments for tactile stimuli distributed over the body surface. Perception 35(2), 247–266 (2006)CrossRefGoogle Scholar
  34. 34.
    Hayward, V.: A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store. Brain Research Bulletin 75(6), 742–752 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Geldard, F.A., Sherrick, C.E.: The Cutaneous “Rabbit”: A Perceptual Illusion. Science 178(4057), 178–179 (1972)CrossRefGoogle Scholar
  36. 36.
    Spence, C., Gallace, A.: Recent developments in the study of tactile attention. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 61(3), 196–207 (2007)CrossRefGoogle Scholar
  37. 37.
    Gunther, E.: Skinscape: A tool for composition in the tactile modality. Master’s thesis, Massachusetts Institute of Technology (2001)Google Scholar
  38. 38.
    Gunther, E., O’Modhrain, S.: Cutaneous Grooves: Composing for the Sense of Touch. Journal of New Music Research 32(4), 369–381 (2003)CrossRefGoogle Scholar
  39. 39.
    Gallace, A., Tan, H.Z., Spence, C.: The Body Surface as a Communication System: The State of the Art after 50 Years. Presence: Teleoperators and Virtual Environments 16(6), 655–676 (2007)CrossRefGoogle Scholar
  40. 40.
    Marshall, M.T., Wanderley, M.M.: Examining the Effects of Embedded Vibrotactile Feedback on the Feel of a Digital Musical Instrument. In: Proceeding of the New Interfaces for Musical Expression Conference (NIME), pp. 399–404 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Input Devices and Music Interaction Laboratory, Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of MusicMcGill UniversityMontréalCanada

Personalised recommendations