Skip to main content

Accurate and Efficient Search Prediction Using Fuzzy Matching and Outcome Feedback

  • Conference paper
  • 1615 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8199)

Abstract

While search engines have demonstrated improvement in both speed and accuracy, the response time to queries is prohibitively long for applications that require immediate and accurate responses to search queries. Examples include identification of multimedia resources related to the subject matter of a particular class, as it is in session. This paper begins with a survey of recommendation and prediction algorithms, each of which applies a different method to predict future search activity based on the search history of a user. To address the shortcomings identified in existing techniques, we draw inspiration from bioinformatics and latent semantic indexing to propose a novel predictive approach based on local alignment and feedback-based neighborhood refinement. We validate our proposed approach with tests on real-world search data. The results support our hypothesis that a majority of users exhibit search behavior that is predictable. Modeling this behavior enables our predictive search engine to bypass the common query-response model and proactively deliver a list of resources to the user.

Keywords

  • Search Engine
  • Recommender System
  • Local Alignment
  • Near Neighbor
  • Target User

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levene, M.: An Introduction to Search Engines and Web Navigation, 2nd edn. John Wiley & Sons (2010)

    Google Scholar 

  2. Mostafa, J.: Seeking better web searches. Scientific American 292(2), 66–73 (2005)

    CrossRef  MathSciNet  Google Scholar 

  3. Hawking, D., Craswell, N., Brailey, P., Griffihs, K.: Measuring search engine quality. Information Retrieval 4(1), 33–59 (2001)

    CrossRef  MATH  Google Scholar 

  4. Wickelgren, W.A.: Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica 41(1), 67–85 (1977)

    CrossRef  Google Scholar 

  5. Konstan, J.A., Riedl, J.: Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction 22, 101–123 (2012)

    CrossRef  Google Scholar 

  6. Cleger-Tamayo, S., Fernández-Luna, J.M., Huete, J.F., Pérez-Vázquez, R., Rodríguez Cano, J.C.: A proposal for news recommendation based on clustering techniques. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part III. LNCS, vol. 6098, pp. 478–487. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  7. Tellez, E.S., Chavez, E., Navarro, G.: Succinct nearest neighbor search. In: Proceedings of the 4th International Conference on Similarity Search and Applications (SISAP), pp. 33–40 (June 2011)

    Google Scholar 

  8. Zipf, G.K.: The psycho-biology of language. Language 12, 196–210 (1936)

    CrossRef  Google Scholar 

  9. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    CrossRef  MATH  Google Scholar 

  10. Xiong, L., Xiang, Y., Zhang, Q., Lin, L.: A novel nearest neighborhood algorithm for recommender systems. In: Proceedings of the Third Global Congress on Intelligent Systems(GCIS), pp. 156–159 ( November 2012)

    Google Scholar 

  11. Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classification techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  12. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Pearson Addison-Wesley (2005)

    Google Scholar 

  13. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    MATH  Google Scholar 

  14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  15. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific (2007)

    Google Scholar 

  16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  17. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the ACM 21(1), 168–173 (1974)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Kolmogorov, A.N.: On tables of random numbers. Theoretical Computer Science 207, 387–395 (1963)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, C.S., Sedigh, S., Hurson, A.R. (2013). Accurate and Efficient Search Prediction Using Fuzzy Matching and Outcome Feedback. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41062-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41061-1

  • Online ISBN: 978-3-642-41062-8

  • eBook Packages: Computer ScienceComputer Science (R0)