Skip to main content

Text Categorization via Similarity Search

An Efficient and Effective Novel Algorithm

  • Conference paper
Similarity Search and Applications (SISAP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8199))

Included in the following conference series:

Abstract

We present a supervised learning algorithm for text categorization which has brought the team of authors the 2nd place in the text categorization division of the 2012 Cybersecurity Data Mining Competition (CDMC’2012) and a 3rd prize overall. The algorithm is quite different from existing approaches in that it is based on similarity search in the metric space of measure distributions on the dictionary. At the preprocessing stage, given a labeled learning sample of texts, we associate to every class label (document category) a point in the space of question. Unlike it is usual in clustering, this point is not a centroid of the category but rather an outlier, a uniform measure distribution on a selection of domain-specific words. At the execution stage, an unlabeled text is assigned a text category as defined by the closest labeled neighbour to the point representing the frequency distribution of the words in the text. The algorithm is both effective and efficient, as further confirmed by experiments on the Reuters 21578 dataset.

This work has been partially supported by a 2012 NSERC Canada Graduate Scholarship and a 2013 Ontario Graduate Scholarship (Hubert Haoyang Duan), 2012–2017 NSERC Discovery Grant “New set-theoretic tools for statistical learning” (Vladimir Pestov), and the 2012 Mitacs Globalink Program (Varun Singla).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aas, K., Eikvil, L.: Text Categorization: A Survey. In: Technical Report 941. Norwegian Computing Center (1999)

    Google Scholar 

  2. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: Applications to image and text data. In: Proceedings of 7th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, KDD 2001, San Francisco, USA, pp. 245–250 (2001)

    Google Scholar 

  3. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Cardoso-Cachopo, A.: Datasets for single-label text categorization, http://web.ist.utl.pt/acardoso/datasets

  5. Church, K.W., Hanks, P.: Word association norms, mutual information and lexicography. In: Proceedings of ACL 27, Vancouver, Canada, pp. 76–83 (1989)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  8. Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  9. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Misc functions of the Department of Statistics (e1071), TU Wien. R package version 1.6 (2011), http://CRAN.R-project.org/package=e1071

  10. Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text Classification. Journal of Machine Learning Research 3, 1289–1305 (2003)

    MATH  Google Scholar 

  11. Ikonomakis, M., Kotsiantis, S., Tampakas, V.: Text Classification Using Machine Learning Techniques. WSEAS Transactions on Computers 4(8), 966–974 (2005)

    Google Scholar 

  12. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Johnson, D.E., Oles, F.J., Zhang, T., Goetz, T.: A decision-tree-based symbolic rule induction system for text categorization. IBM Systems Journal 41(3), 428–437 (2002)

    Article  Google Scholar 

  14. Keim, D.A., Oelke, D., Rohrdantz, C.: Analyzing document collections via context-aware term extraction. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 154–168. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Kim, S.B., Rim, H.C., Yook, D.S., Lim, H.S.: Effective Methods for Improving Naive Bayes Text Classifiers. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 414–423. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Lewis, D.D.: Test Collections, Reuters-21578, http://www.daviddlewis.com/resources/testcollections/reuters21578/

  17. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  18. Lim, H.-S.: Improving kNN Based Text Classification with Well Estimated Parameters. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 516–523. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Pang, P.S., Ban, T., Kadobayashi, Y., Song, J., Huang, K.: The 3rd Cybersecurity Data Mining Competition (2012), http://www.csmining.org/cdmc2012

  20. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  21. R Development Core Team: R: A Language and Environment for Statistical Computer. R Foundation for Statistical Computing, Vienna, Austria (2008), http://www.R-project.org ISBN 3-900051-07-0

  22. Radovanovic, M., Ivanovic, M.: Text Mining: Approaches and Applications. Novi Sad J. Math 38(3), 227–234 (2008)

    MATH  Google Scholar 

  23. Salton, G., McGill, M.J.: An Introduction to Modern Information Retrieval. McGraw-Hill (1983)

    Google Scholar 

  24. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  25. Schölkopf, B., Smola, A.: A Short Introduction to Learning with Kernels. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 41–64. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Schütze, H., Hull, D.A., Pedersen, J.O.: A Comparison of Classifiers and Document Representations for the Routing Problem. In: Proceedings of 18th ACM International Conference on Research and Development in Information Retrieval, SIGIR 1995, Seattle, USA, pp. 229–237 (1995)

    Google Scholar 

  27. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34, 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  28. Torkkola, K.: Linear Discriminant Analysis in Document Classification. In: Proceedings of 2001 IEEE ICDM Workshop on Text Mining, ICDM 2001, San Jose, USA, pp. 800–806 (2001)

    Google Scholar 

  29. Weichold, M., Huang, T.W., Lorentz, R., Qaraqe, K.: The 19th International Conference on Neural Information Processing, ICONIP 2012 (2012), http://www.iconip2012.org

  30. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999, Berkeley, USA, pp. 42–49 (1999)

    Google Scholar 

  31. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: Proceedings of 14th International Conference on Machine Learning, ICML 1997, Nashville, USA, pp. 412–420 (1997)

    Google Scholar 

  32. Zeng, X.Q., Wang, M.W., Nie, J.Y.: Text Classification Based on Partial Least Square Analysis. In: Proceedings of ACM, Seoul, Korea, pp. 834–838 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duan, H.H., Pestov, V.G., Singla, V. (2013). Text Categorization via Similarity Search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41062-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41061-1

  • Online ISBN: 978-3-642-41062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics