MaRDiGraS: Simplified Building of Reachability Graphs on Large Clusters

  • Carlo Bellettini
  • Matteo Camilli
  • Lorenzo Capra
  • Mattia Monga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8169)

Abstract

Dealing with complex systems often needs the building of huge reachability graphs, thus revealing all the challenges associated with big data access and management. It also requires high performance data processing tools that would allow scientists to extract the knowledge from the unprecedented amount of data coming from these analyzed systems. In this paper we present MaRDiGraS, a generic framework aimed at simplifying the construction of very large state transition systems on large clusters and cloud computing platforms. Through a simple programming interface, it can be easily customized to different formalisms, for example Petri Nets, by either adapting legacy tools or implementing brand new distributed reachability graph builders. The outcome of several tests performed on benchmark specifications are presented.

Keywords

Reachability Graph Big Data Formal Methods Distributed Computing Cloud Computing MapReduce 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amazon Web Services. AWS in Education, http://aws.amazon.com/grants/
  2. 2.
    Amazon Web Services. Elastic MapReduce, http://aws.amazon.com/-documentation/elasticmapreduce/
  3. 3.
    Bellettini, C., Camilli, M., Capra, L., Monga, M.: Symbolic state space exploration of RT systems in the cloud. In: Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, pp. 295–302. IEEE CS Press, Los Alamitos (2012)CrossRefGoogle Scholar
  4. 4.
    Bellettini, C., Capra, L.: Reachability analysis of time basic Petri nets: a time coverage approach. In: Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2011, pp. 110–117. IEEE CS Press, Los Alamitos (2011)CrossRefGoogle Scholar
  5. 5.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Softw. Eng. 17, 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Theor. Comput. Sci. 353(1), 208–227 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boukala, M.C., Petrucci, L.: Distributed model-checking and counterexample search for CTL logic. Int. J. Crit. Comput.-Based Syst. 3(1/2), 44–59 (2012)CrossRefGoogle Scholar
  8. 8.
    Caselli, S., Conte, G., Marenzoni, P.: Parallel state space exploration for GSPN models. In: DeMichelis, G., Díaz, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 181–200. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability graph for coloured Petri nets. Theor. Comput. Sci. 176(1-2), 39–65 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chiola, G., Franceschinis, G.: Colored GSPN models and automatic symmetry detection. In: Petri Nets and Performance Models, PNPM 1989, pp. 50–60 (1989)Google Scholar
  11. 11.
    Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: Greatspn 1.7: GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation 24, 47–68 (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Ciardo, G.: Automated parallelization of discrete state-space generation. J. Parallel Distrib. Comput. 47(2), 153–167 (1997)CrossRefGoogle Scholar
  13. 13.
    Ciardo, G., Gluckman, J., Nicol, D.: Distributed state space generation of discrete-state stochastic models. INFORMS J. on Comp. 10(1), 82–93 (1998)CrossRefGoogle Scholar
  14. 14.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  15. 15.
    Dingle, N.J., Knottenbelt, W.J., Suto, T.: Pipe2: a tool for the performance evaluation of generalised stochastic Petri nets. SIGMETRICS Perform. Eval. Rev. 36(4), 34–39 (2009)CrossRefGoogle Scholar
  16. 16.
    Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.: Twister: a runtime for iterative MapReduce. In: Proc. of Symp. on High Performance Distributed Computing, pp. 810–818 (2010)Google Scholar
  17. 17.
    Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A unified high-level petri net formalism for time-critical systems. IEEE Trans. Softw. Eng. 17(2), 160–172 (1991)CrossRefGoogle Scholar
  18. 18.
    Jensen, K., Rozenberg, G.: High-level Petri nets: theory and application. Springer (1991)Google Scholar
  19. 19.
    Kordon, F., Linard, A., Buchs, D., Colange, M., Evangelista, S., Fronc, L., Hillah, L.-M., Lohmann, N., Paviot-Adet, E., Pommereau, F., Rohr, C., Thierry-Mieg, Y., Wimmel, H., Wolf, K.: Raw report on the model checking contest at Petri nets 2012. CoRR, abs/1209.2382 (2012)Google Scholar
  20. 20.
    Kristensen, L., Petrucci, L.: An Approach to Distributed State Space Exploration for Coloured Petri Nets. In: 25th International Conference on Application and Theory of Petri Nets, Bologna, Italy (2004)Google Scholar
  21. 21.
    Lin, J.: Brute force and indexed approaches to pairwise document similarity comparisons with MapReduce. In: Research and Development in Information Retrieval, SIGIR 2009, pp. 155–162. ACM (2009)Google Scholar
  22. 22.
    Lin, J., Schatz, M.: Design patterns for efficient graph algorithms in mapreduce. In: Mining and Learning with Graphs, pp. 78–85. ACM Press, New York (2010)Google Scholar
  23. 23.
    The Apache Software Foundation. Hadoop MapReduce, http://hadoop.apache.org/mapreduce/
  24. 24.
    Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlo Bellettini
    • 1
  • Matteo Camilli
    • 1
  • Lorenzo Capra
    • 1
  • Mattia Monga
    • 1
  1. 1.Università degli Studi di MilanoMilanItaly

Personalised recommendations