Collaborative Schema Matching Reconciliation

  • Hung Quoc Viet Nguyen
  • Xuan Hoai Luong
  • Zoltán Miklós
  • Tho Thanh Quan
  • Karl Aberer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8185)


Schema matching is the process of establishing correspondences between the attributes of database schemas for data integration purpose. Although several schema matching tools have been developed, their results are often incomplete or erroneous. To obtain correct attribute correspondences, in practice, human experts edit the mapping results and fix the mapping problems. As the scale and complexity of data integration tasks have increased dramatically in recent years, the reconciliation phase becomes more and more a bottleneck. Moreover, one often needs to establish the correspondences in not only between two but a network of schemas simultaneously. In such reconciliation settings, it is desirable to involve several experts. In this paper, we propose a tool that supports a group of experts to collaboratively reconcile a set of matched correspondences. The experts might have conflicting views whether a given correspondence is correct or not. As one expects global consistency conditions in the network, the conflict resolution might require discussion and negotiation among the experts to resolve such disagreements. We have developed techniques and a tool that allow approaching this reconciliation phase in a systematic way. We represent the expert’s views as arguments to enable formal reasoning on the assertions of the experts. We detect complex dependencies in their arguments, guide and present them the possible consequences of their decisions. These techniques thus can greatly help them to overlook the complex cases and work more effectively.


Integrity Constraint Schema Match Argumentation Framework Attack Relation Multiple Expert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumueller, D., et al.: Schema and ontology matching with COMA++. In: SIGMOD, pp. 906–908 (2005)Google Scholar
  2. 2.
    Belhajjame, K.: User feedback as a first class citizen in information integration systems. In: CIDR, pp. 175–183 (2011)Google Scholar
  3. 3.
    Bentahar, J., et al.: Using argumentation to model and deploy agent-based B2B applications. In: KBS, pp. 677–692 (2010)Google Scholar
  4. 4.
    Bernstein, P.A., Madhavan, J., Rahm, E.: Generic Schema Matching, Ten Years Later. PVLDB 4(11), 695–701 (2011)Google Scholar
  5. 5.
    Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press (2008)Google Scholar
  6. 6.
    Blakeley, J.A., Larson, P.-A., Tompa, F.W.: Efficiently updating materialized views. SIGMOD Rec., 61–71 (1986)Google Scholar
  7. 7.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM, 92–103 (2011)Google Scholar
  8. 8.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and Implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Caminada, M.: Semi-Stable Semantics. In: COMMA, pp. 121–130 (2006)Google Scholar
  10. 10.
    Charalabidis, Y., Gonalves, R.J., Popplewell, K.: Developing a Science Base for Enterprise Interoperability. In: Enterprise Interoperability IV, pp. 245–254 (2010)Google Scholar
  11. 11.
    Charwat, G., Wallner, J.P., Woltran, S.: Utilizing ASP for Generating and Visualizing Argumentation Frameworks. In: ASPOCP, pp. 51–65 (2012)Google Scholar
  12. 12.
    Doutre, S., Mengin, J.: On Sceptical Versus Credulous Acceptance for Abstract Argument Systems. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 462–473. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Duchateau, F., Bellahsene, Z., Coletta, R.: Matching and Alignment: What Is the Cost of User Post-Match Effort? In: Meersman, R., et al. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 421–428. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Duchateau, F., et al.: (Not) yet another matcher. In: CIKM, pp. 1537–1540 (2009)Google Scholar
  15. 15.
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell., 642–674 (2007)Google Scholar
  16. 16.
    Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell. 77(2), 321–358 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Elvesaeter, B., et al.: Towards enterprise interoperability service utilities. In: ECOCW, pp. 224–229 (2008)Google Scholar
  18. 18.
    Emele, C.D., Norman, T.J., Parsons, S.: Argumentation strategies for plan resourcing. In: AAMAS, pp. 913–920 (2011)Google Scholar
  19. 19.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. In: RAS, pp. 159–182 (1998)Google Scholar
  20. 20.
    Gal, A.: Uncertain Schema Matching. Morgan & Claypool Publishers (2011)Google Scholar
  21. 21.
    Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers. In: JIS, pp. 845–859 (2010)Google Scholar
  22. 22.
    Gal, A., et al.: Completeness and ambiguity of schema cover. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 241–258. Springer, Heidelberg (2013)Google Scholar
  23. 23.
    Gal, A., et al.: Making sense of top-k matchings: a unified match graph for schema matching. In: IIWeb, pp. 6:1–6:6 (2012)Google Scholar
  24. 24.
    Grosse, K., Chesevar, C.I., Maguitman, A.G.: An Argument-based Approach to Mining Opinions from Twitter. In: AT, pp. 408–422 (2012)Google Scholar
  25. 25.
    Haas, P., et al.: Data is Dead Without What-If Models. In: PVLDB, pp. 11–14 (2011)Google Scholar
  26. 26.
    Heras, S., et al.: The Role of Argumentation on the Future Internet: Reaching agreements on Clouds. In: AT, pp. 393–407 (2012)Google Scholar
  27. 27.
    Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: SIGMOD, pp. 847–860 (2008)Google Scholar
  28. 28.
    Kowalczyk, R., Bui, V.: On Constraint-Based Reasoning in e-Negotiation Agents. In: Dignum, F.P.M., Cortés, U. (eds.) AMEC 2000. LNCS (LNAI), vol. 2003, pp. 31–46. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation: a logical model and implementation. In: AI, pp. 1–69 (1998)Google Scholar
  30. 30.
    Lee, Y., et al.: eTuner: tuning schema matching software using synthetic scenarios. JVLDB, 97–122 (2007)Google Scholar
  31. 31.
    Nagarajan, M., et al.: Semantic interoperability of web services-challenges and experiences. In: ICWS, pp. 373–382 (2006)Google Scholar
  32. 32.
    Nguyen, Q.V.H., et al.: An MAS Negotiation Support Tool for Schema Matching (Demonstration). In: AAMAS, pp. 1391–1392 (2013)Google Scholar
  33. 33.
    Nguyen, Q.V.H., et al.: Minimizing Human Effort in Reconciling Match Networks. In: ER (2013)Google Scholar
  34. 34.
    Nguyen, Q.V.H., et al.: On Leveraging Crowdsourcing Techniques for Schema Matching Networks. In: DASFAA, pp. 139–154 (2013)Google Scholar
  35. 35.
    Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems. In: SIGMOD, pp. 5–12 (1999)Google Scholar
  36. 36.
    Parsons, S., Sierra, C., Jennings, N.: Agents that Reason and Negotiate by Arguing. JLC, 261–292 (1998)Google Scholar
  37. 37.
    Peukert, E., Eberius, J., Rahm, E.: AMC - A framework for modelling and comparing matching systems as matching processes. In: ICDE, pp. 1304–1307 (2011)Google Scholar
  38. 38.
    Prakken, H.: Some Reflections on Two Current Trends in Formal Argumentation. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Sergot Festschrift 2012. LNCS, vol. 7360, pp. 249–272. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Qi, Y., Candan, K.S., Sapino, M.L.: FICSR: feedback-based inconsistency resolution and query processing on misaligned data sources. In: SIGMOD, pp. 151–162 (2007)Google Scholar
  40. 40.
    Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. JVLDB, 334–350 (2001)Google Scholar
  41. 41.
    Rahwan, I., Zablith, F., Reed, C.: Towards large scale argumentation support on the semantic web. In: AAAI, pp. 1446–1451 (2007)Google Scholar
  42. 42.
    Rahwan, I., et al.: Argumentation-based negotiation. In: KER, pp. 343–375 (2003)Google Scholar
  43. 43.
    Sá, S., Alcântara, J.: Cooperative dialogues with conditional arguments. In: AAMAS, pp. 501–508 (2012)Google Scholar
  44. 44.
    Saleem, K., Bellahsene, Z.: Complex Schema Match Discovery and Validation through Collaboration. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 406–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  45. 45.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. In: AI, pp. 1–54 (2002)Google Scholar
  46. 46.
    Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A Framework for Argumentation-Based Negotiation. In: Singh, M.P., Rao, A., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 177–192. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  47. 47.
    Smith, K.P., et al.: The Role of Schema Matching in Large Enterprises. In: CIDR (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hung Quoc Viet Nguyen
    • 1
  • Xuan Hoai Luong
    • 1
  • Zoltán Miklós
    • 2
  • Tho Thanh Quan
    • 3
  • Karl Aberer
    • 1
  1. 1.École Polytechnique Fédérale de LausanneSwitzerland
  2. 2.Université de Rennes 1France
  3. 3.Ho Chi Minh City University of TechnologyVietnam

Personalised recommendations