Towards a Wearable Coach: Classifying Sports Activities with Reservoir Computing

  • Stefan Schliebs
  • Nikola Kasabov
  • Dave Parry
  • Doug Hunt
Part of the Communications in Computer and Information Science book series (CCIS, volume 383)


This paper employs a Liquid State Machine (LSM) to classify inertial sensor data collected from horse riders into activities of interest. Since LSM was shown to be an effective classifier for spatio-temporal data and efficient hardware implementations on custom chips exist, we argue that LSM would be relative easy to integrate into wearable technologies. We explore here the general method of applying LSM technology to domain constrained activity recognition using a real-world data set. The aim of this study is to provide a proof of concept illustrating the applicability of LSM for the chosen problem domain.


Wearable Computing Liquid State Machine Reservoir Computing Spatio-temporal data processing Equestrian sport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bohte, S.M., Kok, J.N., Poutré, J.A.L.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1-4), 17–37 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  4. 4.
    Hunt, D.: A heuristic method to distinguish horse rider mounts using a single wrsit mounted inertial sensor. Master’s thesis, Auckland University of Technology, Auckland, New Zealand (2009)Google Scholar
  5. 5.
    Junker, H., Amft, O., Lukowicz, P., Tröster, G.: Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition 41(6), 2010–2024 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lukowicz, P., Ward, J.A., Junker, H., Stäger, M., Tröster, G., Atrash, A., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences 95(9), 5323–5328 (1998)CrossRefGoogle Scholar
  9. 9.
    Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Method for training a spiking neuron to associate input-output spike trains. In: Iliadis, L., Jayne, C. (eds.) EANN/AIAI 2011, Part I. IFIP AICT, vol. 363, pp. 219–228. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Mohemmed, A., Schliebs, S., Matsuda, S., Dhoble, K., Kasabov, N.: Span: Spike pattern association neuron for learning spatio-temporal spike patterns. International Journal on Neural Systems 22, 04 (2012)Google Scholar
  11. 11.
    Nordlie, E., Gewaltig, M.O., Plesser, H.E.: Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5(8), e1000456 (2009)Google Scholar
  12. 12.
    Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Schliebs, S., Fiasché, M., Kasabov, N.: Constructing robust liquid state machines to process highly variable data streams. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 604–611. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Schliebs, S., Hunt, D.: Continuous classification of spatio-temporal data streams using liquid state machines. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part IV. LNCS, vol. 7666, pp. 626–633. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Schrauwen, B., Van Campenhout, J.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2825–2830 (July 2003)Google Scholar
  16. 16.
    Schrauwen, B., D’Haene, M., Verstraeten, D., Campenhout, J.V.: Compact hardware liquid state machines on fpga for real-time speech recognition. Neural Networks 21(2-3), 511–523 (2008)CrossRefGoogle Scholar
  17. 17.
    SparkFun Electronics Inc: IMU 6 degrees of freedom - v4 with bluetooth capability - SparkFun electronics (2008),
  18. 18.
    Stiefmeier, T., Ogris, G., Junker, H., Lukowicz, P., Troster, G.: Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario. In: 2006 10th IEEE International Symposium on Wearable Computers, pp. 97–104. IEEE (2006)Google Scholar
  19. 19.
    Zhu, R., Zhou, Z.: A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 295–302 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Schliebs
    • 1
  • Nikola Kasabov
    • 1
  • Dave Parry
    • 1
  • Doug Hunt
    • 1
  1. 1.Auckland University of TechnologyNew Zealand

Personalised recommendations