Abstract
In this paper we apply Particle Swarm Optimization (PSO) algorithm to the training process of a Multilayer Perceptron (MLP) on the problem of localizing a mobile GSM network terminal inside a building.
The localization data includes the information about the average GSM and WiFi signals in each of the given (x,y,floor) coordinates from more than two thousand points inside a five story building.
We show that the PSO algorithm could be with success applied as an initial training algorithm for the MLP for both classification and regression problems.
Keywords
- Particle Swarm Optimization
- Neural Network training
- Mobile terminal localization
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Neuroph Java Neural Network Framework (2012), http://neuroph.sourceforge.net/
Standard PSO 2011 (2012), http://www.particleswarm.info/
Benikovsky, J., Brida, P., Machaj, J.: Localization in Real GSM Network with Fingerprinting Utilization. In: Chatzimisios, P., Verikoukis, C., Santamaría, I., Laddomada, M., Hoffmann, O. (eds.) Mobile Lightweight Wireless Systems. LNICST, vol. 45, pp. 699–709. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-16644-0_60
Bento, C., Soares, T., Veloso, M., Baptista, B.: A Study on the Suitability of GSM Signatures for Indoor Location. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B., Tscheligi, M., Wichert, R., Aarts, E., Buchmann, A.P. (eds.) AmI 2007. LNCS, vol. 4794, pp. 108–123. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-76652-0_7
Bottou, L.: Stochastic gradient learning in neural networks. In: Proceedings of Neuro-Nımes 1991, vol. 8 (1991)
Cristian, I.T.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)
Cui, X., Potok, T., Palathingal, P.: Document clustering using particle swarm optimization. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 185–191 (June 2005)
Gori, M., Tesi, A.: On the problem of local minima in backpropagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(1), 76–86 (1992)
Grzenda, M.: On the prediction of floor identification credibility in RSS-based positioning techniques. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 610–619. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-38577-3_63
Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. Neural Networks 1(4), 295–307 (1988)
Jing, Y.W., Ren, T., Zhou, Y.C.: Neural network training using pso algorithm in atm traffic control. In: Huang, D.S., Li, K., Irwin, G. (eds.) Intelligent Control and Automation. LNCIS, vol. 344, pp. 341–350. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/978-3-540-37256-1_41
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks. IV, pp. 1942–1948 (1995)
Lakmali, B., Dias, D.: Database Correlation for GSM Location in Outdoor and Indoor Environments. In: 4th International Conference on Information and Automation for Sustainability, pp. 42–47 (2008)
Okulewicz, M., Mańdziuk, J.: Application of Particle Swarm Optimization Algorithm to Dynamic Vehicle Routing Problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 547–558. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-38610-7_50
Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM Indoor Localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11551201_9
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0, http://www.R-project.org/
Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987), http://doi.acm.org/10.1145/37402.37406
Sabak, G.: api.orange.pl tutorial for building localization applications. Tech. rep., Orange (2012) (in polish), http://telco21.pl/orange-celli/
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)
Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)
Vogl, T.P., Mangis, J., Rigler, A., Zink, W., Alkon, D.: Accelerating the convergence of the back-propagation method. Biological Cybernetics 59(4-5), 257–263 (1988)
Wilson, D.R., Martinez, T.R.: The need for small learning rates on large problems. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2001, vol. 1, pp. 115–119 (2001)
Yu, X.H., Chen, G.A.: Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks 10(3), 517–527 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karwowski, J., Okulewicz, M., Legierski, J. (2013). Application of Particle Swarm Optimization Algorithm to Neural Network Training Process in the Localization of the Mobile Terminal. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-41013-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41012-3
Online ISBN: 978-3-642-41013-0
eBook Packages: Computer ScienceComputer Science (R0)