Skip to main content

Ultrathin Ferroelectric Films

  • Chapter
  • First Online:
Ferroelectricity at the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

  • 1711 Accesses

Abstract

As we seen in Chap. 3.3 the Ginzburg conception of the soft mode implicates, that ferroelectric crystals and films are bulk systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recently, it was shown that phase transition in PVDF exists in ultrathin film [24].

  2. 2.

    Recent results on ferroelectric tunnel junction in the ultrathin BaTiO3 films (see Sect. 4.4) and results from strontium titanate films seem to have the same behavior, see [61]. It seems that it must be common tunneling phenomenon.

  3. 3.

    Private comment of A. Gruverman.

  4. 4.

    Even for epitaxial Pb(Zn0.2T0.8)O3 (PZT) thin films with thickness 35 nm, the domain switching and coercive field E expc  ≃ 5 × 10Vm−1 (less that E intc  ≃ (1–1.5) × 10Vm−1) are observed. The switching kinetics differs from KAI, but has no critical character [113].

  5. 5.

    For definite values of δ, λ and α taken from the literature, see below.

References

  1. A. Bune et al., Nature (London) 391, 874 (1998)

    Article  CAS  Google Scholar 

  2. V. Fridkin et al., Ferroelectrics 314, 37 (2005)

    Article  CAS  Google Scholar 

  3. J. Junquera et al., Nature 422, 506 (2003)

    Article  CAS  Google Scholar 

  4. A. Tagantsev, E. Cross, J. Fousek, Domain in Ferroic Crystals and Thin Films (Springer, Berlin, 2009)

    Google Scholar 

  5. M. Krcmar et al., Phys. Rev. B 61, 13 (2000)

    Article  Google Scholar 

  6. T. Furukawa, Ferroelectrks 57, 63 (1984)

    Google Scholar 

  7. T. Furukawa, Phase Transit 18, 143 (1989)

    Google Scholar 

  8. A.J. Lovinger Science 220, 1115 (1983)

    Google Scholar 

  9. A.J. Lovinger, in Developments in Crystalline Polymers, ed. by D.C. Basset, vol. 1 (Elsevier Applied Science, London, 1982)

    Google Scholar 

  10. T. Wang et al., The Applications of Ferroelectric Polymers (Chapman and Hall, New York, 1988)

    Google Scholar 

  11. H. Nalwa, Ferroelectric Polymers (Marcel Dekker, New York, 1995)

    Google Scholar 

  12. G. Sessler, Electrets (Springer, Berlin, 1987)

    Book  Google Scholar 

  13. T. Furukawa et al., Ferroelectrics 57, 63 (1980)

    Article  Google Scholar 

  14. T. Yagi et al., Polymer J. 12, 209 (1980)

    Article  CAS  Google Scholar 

  15. A. Lovinger, Macromol. 16, 1529 (1983)

    Google Scholar 

  16. K.A. Verkhovskaya, R. Danz, V.M. Fridkin, Fiz. Tverd. Tela 29, 2198 (1987) [Sov. J. Solid State 29, 1268 (1987)]

    Google Scholar 

  17. M. Berry et al., in Nonlinear Optical Properties of Organic Materials, ed. G. Khanarian. Proceedings of SPIE, vol. 971 (SPIE, Bellingham, 1988), p. 154

    Google Scholar 

  18. J. Bergman et al., Appl. Phys. Lett. 18, 203 (1971)

    Article  CAS  Google Scholar 

  19. K. Verkhovskaya et al., Ferroelectrks 134, 7 (1992)

    Article  Google Scholar 

  20. M. Litt et al., Appl. Phys. 48, 2208 (1977)

    CAS  Google Scholar 

  21. S. Esayan et al., Appl. Phys. Lett. 67, 623 (1995)

    Article  CAS  Google Scholar 

  22. S. Hachiya, Soc. Inform. Disp. 1, 295 (1993)

    Google Scholar 

  23. M. Fernandez et al., Macromol. 20, 1806 (1987)

    Article  CAS  Google Scholar 

  24. A. Geivandov, S. Yudin, V. Fridkin, S. Ducharme, Phys. Solid State 47, 8 (2005)

    Article  Google Scholar 

  25. K. Tashiro et al., Ferroelectrks 57, 297 (1984)

    Article  CAS  Google Scholar 

  26. K. Kimura et al., Jpn. J. Appl. Phys. 25, 383 (1986)

    Article  CAS  Google Scholar 

  27. S. Palto et al., Ferroelectr. Lett. 19, 65 (1995)

    Article  CAS  Google Scholar 

  28. A. Bune et al., Appl. Phys. Lett. 67, 3975 (1995)

    Article  CAS  Google Scholar 

  29. L.M. Blinov, Usp. Fiz. Nauk 155, 443 (1988) [Sov. Phys. Usp. 31, 623 (1988)]

    Google Scholar 

  30. G. Roberts, Langmuir-Blodgett Films (Plenum, New York, 1990)

    Google Scholar 

  31. M.C. Petty, Langmuir-Blodgett Films: An Introduction (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  32. S. Ducharme et al., Ferroelectrics 202, 9 (1997)

    Article  Google Scholar 

  33. R. Advincula et al., in Organic Thin Films: Structure and Applications, ed. by C.W. Frank, ACS Symposium Series, vol. 695 (American Chemical Society, Washington, 1998), p. 192

    Google Scholar 

  34. A.V. Sorokin, Langmuir–Blodgett Deposition of Ferroelectric Polymer Films. PhD Thesis (Institute of Crystallography, Moscow, 1997)

    Google Scholar 

  35. S. Palto et al., Europhys. Lett. 34, 465 (1996)

    Article  CAS  Google Scholar 

  36. J. Choi et al., Phys. Lett. A 249, 505 (1999)

    Article  Google Scholar 

  37. C.N. Borca et al., Appl. Phys. Lett. 74, 347 (1999)

    Article  CAS  Google Scholar 

  38. J. Choi et al., Phys. Rev. B 61, 5760 (1999)

    Article  Google Scholar 

  39. V. Fridkin et al., Phys. Usp. 49(2), 193 (2006)

    Article  CAS  Google Scholar 

  40. O. Auciello et al., Phys. Today 51(7), 22 (1998)

    Article  CAS  Google Scholar 

  41. S. Ducharme et al., Phys. Rev. B 57, 25 (1998)

    Article  CAS  Google Scholar 

  42. J. Legrand, Ferroelectrics 91, 303 (1989)

    Google Scholar 

  43. A. Geivandov et al., JETP 99, 83 (2004)

    Article  CAS  Google Scholar 

  44. K. Verkhovskaya, Thesis, Russins Academy of Science (1996)

    Google Scholar 

  45. A.V. Bune et al., J. Appl. Phys. 85, 7869 (1999)

    Article  CAS  Google Scholar 

  46. V. Ginzburg, Zh. Eksp. Teor. Fiz. 15, 739 (1945) [J. Phys. USSR 10, 107(1946)]

    Google Scholar 

  47. V. Ginzburg, Zh. Eksp. Teor. Fiz. 19, 36 (1949)

    CAS  Google Scholar 

  48. A. Devonshire, Adv. Phys. 3, 85 (1954)

    Google Scholar 

  49. A. Devonshire, Philos. Mag. 40, 1040 (1949)

    Google Scholar 

  50. A. Devonshire, Philos. Mag. 42, 1065 (1951)

    Google Scholar 

  51. W. Merz, Phys. Rev. 91, 513(1953)

    Google Scholar 

  52. K. Okada et al., Phys. Lett. A 37, 337 (1971)

    Article  CAS  Google Scholar 

  53. V. Gladkii et al., Sov. J. Solid State 13, 2592 (1971)

    Google Scholar 

  54. C. Bahr et al., Phys. Rev. A 39, 5459 (1989)

    Article  CAS  Google Scholar 

  55. M. Lines, Glass A Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)

    Google Scholar 

  56. H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969)

    Google Scholar 

  57. К. Tashiro et al., Macromol. 13, 691 (1980)

    Article  CAS  Google Scholar 

  58. E. Fukada, Phase Transit 18, 135 (1989)

    Google Scholar 

  59. T. Furukawa, Seo N Jpn. J. Appl. Phys. 24, 675 (1990)

    Article  Google Scholar 

  60. P. Nye, Physical Properties of Crystals (Oxford Press, London, 1967)

    Google Scholar 

  61. K. Abe et al., Jpn. J. Appl. Phys. 36, 5846 (1997)

    Article  CAS  Google Scholar 

  62. R. Fowler et al., Proc. R. Soc. London. Ser. A 119, 173 (1928)

    Article  CAS  Google Scholar 

  63. Y. Isono et al., J. Appl. Phys. 75, 4557 (1994)

    Google Scholar 

  64. C.L. Wang et al., Phys. Lett. A 254, 297 (1999)

    Article  CAS  Google Scholar 

  65. T. Furukawa et al., Jpn. J. Appl. Phys. 24, L661 (1985)

    Article  Google Scholar 

  66. R. Allenspach et al., Phys. Rev. Lett. 69, 3385 (1992)

    Article  CAS  Google Scholar 

  67. H. Qu et al., Appl. Phys. Lett. 82, 4322 (2003)

    Article  CAS  Google Scholar 

  68. S. Ducharme et al., Phys. Rev. Lett. 84, 175 (2000)

    Article  CAS  Google Scholar 

  69. A. Tagantsev, Integr. Ferroelectrics 16, 237 (1997)

    Google Scholar 

  70. A. Tagantsev, Ferroelectrics 184, 79 (1996)

    Google Scholar 

  71. B. Strukov, Levanyuk A Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998)

    Book  Google Scholar 

  72. N. Mermin et al., Phys. Rev. Lett. 17, 1133 (1966)

    Article  CAS  Google Scholar 

  73. M.J. Dawber, Phys. Condens. Matter. 15, 1393 (2003)

    Google Scholar 

  74. R. Kohler et al., J. Korean Phys. Soc. 32, 1744 (1998)

    Google Scholar 

  75. J. Ziman, Principle of the Theory of Solids (Cambridge University Press, Cambridge, 1972)

    Google Scholar 

  76. B. Roulet, AJP 68, 319 (2000)

    Google Scholar 

  77. G. Mahan, Many-Particle Physics (Kluwer Academic, New York, 2000)

    Book  Google Scholar 

  78. M. Bai et al., J. Appl. Phys. 95, 3372 (2004)

    Article  CAS  Google Scholar 

  79. S. Kevan et al., Phys. Rev. Lett. 53, 702 (1984)

    Article  CAS  Google Scholar 

  80. S. Kevan, Phys. Rev. B 32, 2344 (1985)

    Google Scholar 

  81. J. Choi et al., Phys. Rev. Lett. 80, 1328 (1998)

    Article  CAS  Google Scholar 

  82. J. Choi et al., Phys. Rev. B 59, 1819 (1998)

    Article  Google Scholar 

  83. M. Dowber et al., Phys. Rev. Lett. 95, 177601 (2005)

    Article  Google Scholar 

  84. S. Ducharme et al., Ferroelectric polymer langmuir-blodgett films, in Ferroelectric and Dielectric Thin Films, ed. by H.S.Nalwa (Academic Press, San Diego, 2002)

    Google Scholar 

  85. L. Blinov et al., Physics-Uspekhi 43(3), 243 (2000)

    Google Scholar 

  86. S. Hong, Nanoscale Phenomena in Ferroelectric Thin Films (Springer, Heidelberg, 2004)

    Google Scholar 

  87. K. Rabe, C. Ahn, J-M. Triscone, Physics of Ferroelectrics: A Modern Perspective (Springer, Berlin, 2007)

    Google Scholar 

  88. A. Zenkevich et al., Appl. Phys. Lett. 99, 182905 (2011)

    Article  Google Scholar 

  89. T. Tybell et al., Appl. Phys. Lett. 75, 856 (1999)

    Article  CAS  Google Scholar 

  90. C. Ahn et al., Science 303, 488 (2004)

    Article  CAS  Google Scholar 

  91. S. Prasertchoung et al., Appl. Phys. Lett. 84, 3130 (2004)

    Article  CAS  Google Scholar 

  92. D. Fong et al., Phys. Rev. Lett. 96, 127601 (2006)

    Article  CAS  Google Scholar 

  93. Y. Kim et al., in Proceedings Of the Workshop Nanoelectronics Day 2005, Abstract book, Forschungszentrum Juelich (2005), p.29

    Google Scholar 

  94. D. Kim et al., Phys. Rev. Lett. 95, 237602 (2005)

    Article  CAS  Google Scholar 

  95. I. Naumov et al., Nature 432, 737 (2004)

    Article  CAS  Google Scholar 

  96. C. Lichtensteiger et al., Phys. Rev. Lett. 94, 047603 (2005)

    Article  Google Scholar 

  97. F. Jona, G. Shirane, Ferroelectric Crystals (Macmillan, N.Y., 1962)

    Google Scholar 

  98. V. Fridkin et al., Sov. Solid State Physics 43, 1268 (2001)

    Google Scholar 

  99. V. Garcia et al., Science 327, 1106 (2010)

    Article  CAS  Google Scholar 

  100. A. Chanthbouala et al., Nat. Nanotechnol. 7, 101 (2012)

    Article  CAS  Google Scholar 

  101. H. Lu, Adv. Mater. (2012). doi: 10.1002/adma. 201104398

  102. S. Kalinin et al., Appl. Phys. Lett. 92, 152906 (2008)

    Article  Google Scholar 

  103. D. Tenne et al., Phys. Rev. Lett. 103, 177601 (2009)

    Article  CAS  Google Scholar 

  104. I. Ishibashi et al., J. Phys. Soc. Jpn. 31, 5065512 (1971)

    Google Scholar 

  105. H. Orihara et al., J. Phys. Soc. Jpn. 63, 1031 (1994)

    Article  CAS  Google Scholar 

  106. S. Hashimoto et al., J. Phys. Soc. Jpn. 63, 1601 (1994)

    Article  CAS  Google Scholar 

  107. I. Ishibashi, Jpn. J. Appl. Phys. 31, 2822 (1992)

    Google Scholar 

  108. M. Alexe, A. Gruverman, Nanoscale Characterization of Ferroelectric Materials (Springer, Berlin, 2004)

    Google Scholar 

  109. S. Jesse et al., Appl. Phys. Lett. 88, 062908 (2006)

    Google Scholar 

  110. A. Gruverman et al., Appl. Phys. Lett. 87, 082902 (2005)

    Article  Google Scholar 

  111. S. Yang et al., Appl. Phys. Lett. 92, 252901 (2008)

    Article  Google Scholar 

  112. D. Wu et al., Appl. Phys. Lett. 96, 112903 (2010)

    Article  Google Scholar 

  113. I. Kim et al., Nano Lett. 10, 1266 (2010)

    Article  CAS  Google Scholar 

  114. A. Gruverman et al., Appl. Phys. Lett. 82, 3071 (2003)

    Article  CAS  Google Scholar 

  115. I. Stolichnov et al., Appl. Phys. Lett. 80, 4804 (2002)

    Article  CAS  Google Scholar 

  116. S. Hong et al., J. Appl. Phys. 86, 607 (1999)

    Article  CAS  Google Scholar 

  117. A. Ievlev et al., Ferroelectric Lett. 33, 147 (2006)

    Article  CAS  Google Scholar 

  118. N. Spaldin, Science 304, 1606 (2004)

    Article  CAS  Google Scholar 

  119. M. Glinchuk et al., J. Phys. Condens. Matter. 16, 3517 (2004)

    Google Scholar 

  120. D.R. Tilley, in Ferroelectric Thin Films: Synthesis and Basic Propeties eds. C. Paz de Araujo, J.F. Scott, G.F. Taylor (Amsterdam, Gordon and Breach, 1996), p. 11

    Google Scholar 

  121. A. Zembilgotov et al., J. Appl. Phys. 91, 2247 (2002)

    Article  CAS  Google Scholar 

  122. A. Bratkovsky et al., Phys. Rev. Lett. 94, 017601 (2005)

    Article  Google Scholar 

  123. C. Duan et al., Phys. Rev. Lett. 97, 047201 (2006)

    Article  Google Scholar 

  124. A. Tolstousov et al., Ferroelectrics 353, 1 (2007)

    Google Scholar 

  125. R. Tadros-Morgane et al., J. Phy. D (Appl. Phys.) 39, 4871 (2006)

    Google Scholar 

  126. D. Fong et al., Science 304, 1650 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fridkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fridkin, V., Ducharme, S. (2014). Ultrathin Ferroelectric Films. In: Ferroelectricity at the Nanoscale. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41007-9_4

Download citation

Publish with us

Policies and ethics