Skip to main content

Modeling Biosilicification at Subcellular Scales

  • Chapter
  • First Online:
Biomedical Inorganic Polymers

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 54))

  • 1261 Accesses

Abstract

Biosilicification occurs in many organisms. Sponges and diatoms are major examples of them. In this chapter, we introduce a modeling approach that describes several biological mechanisms controlling silicification. Modeling biosilicification is a typical multiscale problem where processes at very different temporal and spatial scales need to be coupled: processes at the molecular level, physiological processes at the subcellular and cellular level, etc. In biosilicification morphology plays a fundamental role, and a spatiotemporal model is required. In the case of sponges, a particle simulation based on diffusion-limited aggregation is presented here. This model can describe fractal properties of silica aggregates in first steps of deposition on an organic template. In the case of diatoms, a reaction–diffusion model is introduced which can describe the concentrations of chemical components and has the possibility to include polymerization chain of reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Arrayás M, Ebert U, Hundsdorfer W (2002) Spontaneous branching of anode-directed streamers between planar electrodes. Phys Rev Lett 88:174502. doi:10.1103/PhysRevLett.88.174502

    Article  PubMed  Google Scholar 

  • Azam F (1974) Silicic acid uptake in diatoms studied with [68Ge] germanic acid as tracer. Planta 121:205–212

    Article  CAS  Google Scholar 

  • Ben-Jacob E (1993) From snowflake formation to growth of bacterial colonies. Part I. Diffusive patterning in azoic systems. Contemp Phys 34:247–273

    Article  Google Scholar 

  • Ben-Jacob E (1997) From snowflake formation to growth of bacterial colonies II: cooperative formation of complex colonial patterns. Contemp Phys 38(3):205–241. doi:10.1080/001075197182405

    Article  CAS  Google Scholar 

  • Bensimon D (1986) Stability of viscous fingering. Phys Rev A 33:1302–1308. doi:10.1103/PhysRevA.33.1302

    Article  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-JĂ©zĂ©quel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Bradbury RH, Reichelt RE (1983) Fractal dimension of a coral reef at ecological scales. Mar Ecol Prog Ser 10:169–171

    Article  Google Scholar 

  • Brasser H, van der Strate H, Gieskes W, Krijger G, Vrieling E, Wolterbeek H (2012) Compartmental analysis suggests macropinocytosis at the onset of diatom valve formation. Silicon 4:39–49. doi:10.1007/s12633-010-9059-2

    Article  CAS  Google Scholar 

  • Brener E, MĂĽller-Krumbhaar H, Temkin D (1996) Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:2714–2722. doi:10.1103/PhysRevE.54.2714

    CAS  PubMed  Google Scholar 

  • Cronemberger CM, Sampaio LC (2006) Growth of fractal electrodeposited aggregates under action of electric and magnetic fields using a modified diffusion-limited aggregation algorithm. Phys Rev E Stat Nonlin Soft Matter Phys 73:041403. doi:10.1103/PhysRevE.73.041403

    Article  PubMed  Google Scholar 

  • Cronemberger C, Sampaio LC, GuimarĂŁes AP, Molho P (2010) Model for the growth of electrodeposited ferromagnetic aggregates under an in-plane magnetic field. Phys Rev E Stat Nonlin Soft Matter Phys 81:021403. doi:10.1103/PhysRevE.81.021403

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Kaandorp JA (2006) Mathematical modeling of calcium homeostasis in yeast cells. Cell Calcium 39(4):337–348. doi:10.1016/j.ceca.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  • Drum RW, Pankratz HS (1964) Post mitotic fine structure of Gomphonema parvulum. J Ultrastruct Res 10:217–223

    Article  CAS  PubMed  Google Scholar 

  • Flynn KJ, Martin-JĂ©zĂ©quel V (2000) Modelling Si–N limited growth of diatoms. J Plankton Res 22:447–472

    Article  CAS  Google Scholar 

  • Gordon R, Drum RW (1994) The chemical basis of diatom morphogenesis. Int Rev Cytol 150:243–372

    CAS  Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  CAS  PubMed  Google Scholar 

  • Gröger C, Lutz K, Brunner E (2008a) Biomolecular self-assembly and its relevance in silica biomineralization. Cell Biochem Biophys 50:23–39

    Article  PubMed  Google Scholar 

  • Gröger C, Sumper M, Brunner E (2008b) Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: solid-state 29Si NMR and fluorescence microscopic studies. J Struct Biol 161(1):55–63. doi:10.1016/j.jsb.2007.09.010

    Article  PubMed  Google Scholar 

  • Harding JH, Duffy DM, Sushko ML, Rodger PM, Quigley D, Elliott JA (2008) Computational techniques at the organic-inorganic interface in biomineralization. Chem Rev 108(11):4823–4854. doi:10.1021/cr078278y

    Article  CAS  PubMed  Google Scholar 

  • Harrison FW, Davis DA (1982) Morphological and cytochemical patterns during early stages of reduction body formation in Spongilla lacustris (Porifera: Spongillidae). Trans Am Microsc Soc 101:317–324

    Article  Google Scholar 

  • Hildebrand M (2000) Silicic acid transport and its control during cell wall silicification in diatoms. In: Bäuerlein E (ed) Biomineralization—from biology to biotechnology and medical applications. Wiley, Weinheim, pp 170–188

    Google Scholar 

  • Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874

    Article  CAS  PubMed  Google Scholar 

  • Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C. Geochim Cosmochim Acta 69(2):293–303. doi:10.1016/j.gca.2004.06.038

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York, NY

    Google Scholar 

  • Kaandorp JA (1991) Modelling growth forms of the sponge Haliclona oculata (Porifera, Demospongiae) using fractal techniques. Mar Biol 110(2):203–215

    Article  Google Scholar 

  • Kaandorp JA, Filatov M, Chindapol N (2011) Simulating and quantifying the environmental influence on coral colony growth form, Coral Reefs: an ecosystem in transition. Springer, New York, NY, pp 177–185

    Book  Google Scholar 

  • Knoblich B, Gerber TH (2001) Aggregation in SiO2 sols from sodium silicate solutions. J Non Cryst Solids 283:1–3

    Article  Google Scholar 

  • Krasko A, Batel R, Schröder HC, MĂĽller IM, MĂĽller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  CAS  PubMed  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107. doi:10.1146/annurev.genet.41.110306.130109

    Article  PubMed  Google Scholar 

  • LĂłpez-TomĂ s L, Claret J, SaguĂ©s F (1993) Quasi-two-dimensional electrodeposition under forced fluid flow. Phys Rev Lett 71:4373–4376. doi:10.1103/PhysRevLett.71.4373

    Article  PubMed  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freeman, San Francisco, CA

    Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–500

    Article  CAS  Google Scholar 

  • Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792. doi:10.1038/nmat2496

    Article  CAS  PubMed  Google Scholar 

  • Morse DR, Lawton JH, Dodson MM, Williamson MH (1985) Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314(6013):731–733

    Article  Google Scholar 

  • MĂĽller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    Article  PubMed  Google Scholar 

  • MĂĽller WEG, Wang X, Wiens M, SchloĂźmacher U, Jochum KP, Schröder HC (2011) Hardening of bio-silica in sponge spicules involves an aging process after its enzymatic polycondensation: evidence for an aquaporin-mediated water absorption. Biochim Biophys Acta 1810(7):713–726

    Article  PubMed  Google Scholar 

  • Murr MM, Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102:11657

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer L, Pietronero L, Wiesmann HJ (1984) Fractal dimension of dielectric breakdown. Phys Rev Lett 52:1033–1036. doi:10.1103/PhysRevLett.52.1033

    Article  Google Scholar 

  • Park SS, Durian DJ (1994) Viscous and elastic fingering instabilities in foam. Phys Rev Lett 72:3347–3350. doi:10.1103/PhysRevLett.72.3347

    Article  CAS  PubMed  Google Scholar 

  • Parkinson J, Brechet Y, Gordon R (1999) Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochim Biophys Acta 1452:89–102

    Article  CAS  PubMed  Google Scholar 

  • Perry C, Keeling-Tucker K (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550. doi:10.1007/s007750000130

    Article  CAS  PubMed  Google Scholar 

  • Round F, Crawford R, Mann D (1990) The diatoms. Cambridge University Press, Cambridge

    Google Scholar 

  • SchloĂźmacher U, Wiens M, Schröder HC, Wang X, Jochum KP, MĂĽller WEG (2011) Silintaphin-1—interaction with silicatein during structure-guiding bio-silica formation, the. FEBS J 278:1145–1155. doi:10.1111/j.1742-4658.2011.08040.x

    Article  PubMed  Google Scholar 

  • Schmid A-MM, Schulz D (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100:267–288

    Article  Google Scholar 

  • Schmidt PW, Höhr A, Neumann HB, Kaiser H (1989) Small-angle x-ray scattering study of the fractal morphology of porous silicas. J Chem Phys 90:5016–5023

    Article  CAS  Google Scholar 

  • Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, MĂĽller IM, MĂĽller WEG (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031

    Article  PubMed  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, MĂĽller IM, MĂĽller WEG (2006) Co-Expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009

    Article  PubMed  Google Scholar 

  • Schröder HC, Natalio F, Shukoor I, Tremel W, SchloĂźmacher U, Wang XH, MĂĽller WEG (2007) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334

    Article  PubMed  Google Scholar 

  • Schultze M (1863) Die Structur der Diatomeenschale verglichen mit gewissen aus Fluorkiesel kĂĽnstlich darstellbaren Kieselhäuten. In: Weber CO (ed) Verhandlungen des naturhistorischen Vereines der preussischen Rheinlande und Westphalens. Max Cohen & Sohn, Bonn, pp 1–41

    Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  PubMed  Google Scholar 

  • Spinde K, Pachis K, Antonakaki I, Paasch S, Brunner E, Demadis KD (2011) Influence of polyamines and related macromolecules on silicic acid polycondensation: relevance to “soluble silicon pools”? Chem Mater 23:4676–4687. doi:10.1021/cm201988g

    Article  CAS  Google Scholar 

  • Sumper M (2002) A phase separation model for the nanopatterning of diatom biosilica. Science 295:2430–2433

    Article  CAS  PubMed  Google Scholar 

  • Sumper M (2004) Biomimetic patterning of silica by long-chain polyamines. Angew Chem Int Ed Engl 43:2251–2254

    Article  CAS  PubMed  Google Scholar 

  • Sumper M, Brunner E (2006) Learning from diatoms: nature’s tool for the production of nanostructured silica. Adv Funct Mater 16:17–26

    Article  CAS  Google Scholar 

  • Sumper M, Brunner E (2008) Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana. Chembiochem 9:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Thamatrakoln K, Hildebrand M (2006) Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle. Eukaryot cell 6(2):271–279. doi:10.1128/EC.00235-06

    Article  PubMed Central  PubMed  Google Scholar 

  • Thamatrakoln K, Hildebrand M (2007) Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle. Eukaryot Cell 6(2):271–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thamatrakoln K, Hildebrand M (2008) Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol 146(3):1397–1407. doi:10.1104/pp. 107-107094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theiler J (1990) Estimating fractal dimension. J Opt Soc Am A 7(6):1055–1073

    Article  Google Scholar 

  • Vrieling EG, Gieskes WWC, Beelen TPM (1999) Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J Phycol 35:548–559

    Article  CAS  Google Scholar 

  • Vrieling EG, Belen TPM, van Santen RA, Gieskes WWC (2002) Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angew Chem Int Ed Engl 41:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, MĂĽller WEG (2009) The role of the silicatein-alpha interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 2009(30):1648–1656

    Article  Google Scholar 

  • Wiens M, Schröder HC, Wang XH, Link T, Steindorf D, MĂĽller WEG (2011) Isolation of the silicatein- interactor silintaphin-2 by a novel solid-phase pull-down assay. Biochemistry 50:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Wischmeyer AG, Del Amo Y, Brzezinski M, Wolf-Gladrow DA (2003) Theoretical constraints on the uptake of silicic acid species by marine diatoms. Mar Chem 82(1–2):13–29. doi:10.1016/S0304-4203(03)00033-1

    Article  CAS  Google Scholar 

  • Witten TA Jr, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403. doi:10.1103/PhysRevLett.47.1400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap A. Kaandorp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javaheri, N., Cronemberger, C.M., Kaandorp, J.A. (2013). Modeling Biosilicification at Subcellular Scales. In: Müller, W., Wang, X., Schröder, H. (eds) Biomedical Inorganic Polymers. Progress in Molecular and Subcellular Biology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41004-8_5

Download citation

Publish with us

Policies and ethics