ViperCharts: Visual Performance Evaluation Platform

  • Borut Sluban
  • Nada Lavrač
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8190)


The paper presents the ViperCharts web-based platform for visual performance evaluation of classification, prediction, and information retrieval algorithms. The platform enables to create interactive charts for easy and intuitive evaluation of performance results. It includes standard visualizations and extends them by offering alternative evaluation methods like F-isolines, and by establishing relations between corresponding presentations like Precision-Recall and ROC curves. Additionally, the interactive performance charts can be saved, exported to several formats, and shared via unique web addresses. A web API to the service is also available.


classifiers performance evaluation web application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., Wiswedel, B.: KNIME - the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor. Newsl. 11(1), 26–31 (2009)CrossRefGoogle Scholar
  2. 2.
    Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd ICML Conference, pp. 233–240 (2006)Google Scholar
  3. 3.
    Demšar, J., Zupan, B., Leban, G., Curk, T.: Orange: From experimental machine learning to interactive data mining. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 537–539. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Drummond, C., Holte, R.C.: Cost curves: An improved method for visualizing classifier performance. Machine Learning 65(1), 95–130 (2006)CrossRefGoogle Scholar
  5. 5.
    Flach, P.A.: ROC Analysis. In: Encyclopedia of Machine Learning, pp. 869–875 (2010)Google Scholar
  6. 6.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: A cloud based scientific workflow platform. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 816–819. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  9. 9.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid prototyping for complex data mining tasks. In: ACM SIGKDD, pp. 935–940 (2006)Google Scholar
  10. 10.
    Sluban, B., Gamberger, D., Lavrač, N.: Ensemble-based noise detection: noise ranking and visual performance evaluation. In: Data Mining and Knowledge Discovery (2013), doi:DOI 10.1007/s10618-012-0299-1Google Scholar
  11. 11.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers Inc. (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Borut Sluban
    • 1
  • Nada Lavrač
    • 1
  1. 1.Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations