Skip to main content

OpenML: A Collaborative Science Platform

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8190)

Abstract

We present OpenML, a novel open science platform that provides easy access to machine learning data, software and results to encourage further study and application. It organizes all submitted results online so they can be easily found and reused, and features a web API which is being integrated in popular machine learning tools such as Weka, KNIME, RapidMiner and R packages, so that experiments can be shared easily.

Keywords

  • Experimental Methodology
  • Machine Learning
  • Databases
  • Meta-Learning

References

  1. Hand, D.: Classifier technology and the illusion of progress. Statistical Science (January 2006)

    Google Scholar 

  2. Hirsh, H.: Data mining research: Current status and future opportunities. Statistical Analysis and Data Mining 1(2), 104–107 (2008)

    MathSciNet  CrossRef  Google Scholar 

  3. Nielsen, M.A.: The future of science: Building a better collective memory. APS Physics 17(10) (2008)

    Google Scholar 

  4. Peng, Y.H., Flach, P.A., Soares, C., Brazdil, P.B.: Improved dataset characterisation for meta-learning. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 141–152. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. A new way to share, organize and learn from experiments. Machine Learning 87(2), 127–158 (2012), https://lirias.kuleuven.be/handle/123456789/297378

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Rijn, J.N. et al. (2013). OpenML: A Collaborative Science Platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013. Lecture Notes in Computer Science(), vol 8190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40994-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40994-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40993-6

  • Online ISBN: 978-3-642-40994-3

  • eBook Packages: Computer ScienceComputer Science (R0)