Abstract
Drug repositioning helps identify new indications for marketed drugs and clinical candidates. In this study, we proposed an integrative computational framework to predict novel drug indications for both approved drugs and clinical molecules by integrating chemical, biological and phenotypic data sources. We defined different similarity measures for each of these data sources and utilized a weighted k-nearest neighbor algorithm to transfer similarities of nearest neighbors to prediction scores for a given compound. A large margin method was used to combine individual metrics from multiple sources into a global metric. A large-scale study was conducted to repurpose 1007 drugs against 719 diseases. Experimental results showed that the proposed algorithm outperformed similar previously developed computational drug repositioning approaches. Moreover, the new algorithm also ranked drug information sources based on their contributions to the prediction, thus paving the way for prioritizing multiple data sources and building more reliable drug repositioning models.
Keywords
- Drug Repositioning
- Drug Indication Prediction
- Multiple Data Sources
- Metric Integration
- Large Margin Method
Download conference paper PDF
References
Hurle, M.R., Yang, L., Xie, Q., Rajpal, D.K., Sanseau, P., Agarwal, P.: Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther. 93(4), 335–341 (2013)
Ashburn, T.T., Thor, K.B.: Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nature Reviews Drug Discovery 3, 645–646 (2004)
Sardana, D., Zhu, C., Zhang, M., Gudivada, R.C., Yang, L., Jegga, A.G.: Drug repositioning for orphan diseases. Brief Bioinform 12(4), 346–356 (2011)
Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L., Edwards, D.D., Shoichet, B.K., Roth, B.L.: Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009)
Li, J., Zhu, X., Chen, J.Y.: Building Disease-Specific Drug-Protein Connectivity Maps from Molecular Interaction Networks and PubMed Abstracts. PLoS Comput. Biol. 5(7), e1000450 (2009)
Kotelnikova, E., Yuryev, A., Mazo, I., Daraselia, N.: Computational approaches for drug repositioning and combination therapy design. J. Bioinform Comput. Biol. 8(3), 593–606 (2010)
Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J., Bork, P.: Drug target identification using side-effect similarity. Science 321, 263–266 (2008)
Yang, L., Agarwal, P.: Systematic Drug Repositioning Based on Clinical Side-Effects. PLoS ONE 6(12), e28025 (2011)
Hu, G., Agarwal, P.: Human Disease-Drug Network Based on Genomic Expression Profiles. PLoS ONE 4(8), e6536 (2009)
Sirota, M., Dudley, J.T., Kim, J., Chiang, A.P., Morgan, A.A., Sweet-Cordero, A., Sage, J., Butte, A.J.: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3(96), 96ra77 (2011)
Luo, H., Chen, J., Shi, L., Mikailov, M., Zhu, H., Wang, K., He, L., Yang, L.: DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 39(Web Server Issue), W492–W498 (2011)
Li, J., Lu, Z.: A New Method for Computational Drug Repositioning Using Drug Pairwise Similarity. In: IEEE International Conference on Bioinformatics and Biomedicine (2012)
Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011)
Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)
Davis, J., Goadrich, M.: The Relationship Between Precision-Recall and ROC Curves. In: International Conference on Machine Learning (2006)
Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Bryant, S.H.: PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37(Web Server Issue), W623–W633 (2009)
Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The Chemistry Development Kit (CDK): an open-source Java library for Chemo- and Bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)
Smith, T.F., Waterman, M.S., Burks, C.: The statistical distribution of nucleic acid similarities. Nucleic Acids Res. 13, 645–656 (1985)
Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J., Bork, P.: A side effect resource to capture phenotypic effects of drugs. Molecular Systems Biology 6, 343 (2010)
Pauwels, E., Stoven, V., Yamanishi, Y.: Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 12, 169 (2011)
Pandey, G., Myers, C.L., Kumar, V.: Incorporating functional inter-relationships into protein function prediction algorithms. BMC Bioinformatics 10, 142 (2009)
Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database Issue), D901–D906 (2008)
Olivier, B.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(Database Issue), D267–D270 (2004)
Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32(Database Issue), D115–D119 (2004)
Upton, G.: Fisher’s exact test. Journal of the Royal Statistical Society, Series A 155(3), 395–402 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, P., Agarwal, P., Obradovic, Z. (2013). Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013. Lecture Notes in Computer Science(), vol 8190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40994-3_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-40994-3_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40993-6
Online ISBN: 978-3-642-40994-3
eBook Packages: Computer ScienceComputer Science (R0)