Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

Joint European Conference on Machine Learning and Knowledge Discovery in Databases

ECML PKDD 2013: Machine Learning and Knowledge Discovery in Databases pp 579–594Cite as

  1. Home
  2. Machine Learning and Knowledge Discovery in Databases
  3. Conference paper
Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources

Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources

  • Ping Zhang23,
  • Pankaj Agarwal24 &
  • Zoran Obradovic25 
  • Conference paper
  • 5723 Accesses

  • 16 Citations

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8190)

Abstract

Drug repositioning helps identify new indications for marketed drugs and clinical candidates. In this study, we proposed an integrative computational framework to predict novel drug indications for both approved drugs and clinical molecules by integrating chemical, biological and phenotypic data sources. We defined different similarity measures for each of these data sources and utilized a weighted k-nearest neighbor algorithm to transfer similarities of nearest neighbors to prediction scores for a given compound. A large margin method was used to combine individual metrics from multiple sources into a global metric. A large-scale study was conducted to repurpose 1007 drugs against 719 diseases. Experimental results showed that the proposed algorithm outperformed similar previously developed computational drug repositioning approaches. Moreover, the new algorithm also ranked drug information sources based on their contributions to the prediction, thus paving the way for prioritizing multiple data sources and building more reliable drug repositioning models.

Keywords

  • Drug Repositioning
  • Drug Indication Prediction
  • Multiple Data Sources
  • Metric Integration
  • Large Margin Method

Download conference paper PDF

References

  1. Hurle, M.R., Yang, L., Xie, Q., Rajpal, D.K., Sanseau, P., Agarwal, P.: Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther. 93(4), 335–341 (2013)

    CrossRef  Google Scholar 

  2. Ashburn, T.T., Thor, K.B.: Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nature Reviews Drug Discovery 3, 645–646 (2004)

    CrossRef  Google Scholar 

  3. Sardana, D., Zhu, C., Zhang, M., Gudivada, R.C., Yang, L., Jegga, A.G.: Drug repositioning for orphan diseases. Brief Bioinform 12(4), 346–356 (2011)

    CrossRef  Google Scholar 

  4. Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L., Edwards, D.D., Shoichet, B.K., Roth, B.L.: Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009)

    CrossRef  Google Scholar 

  5. Li, J., Zhu, X., Chen, J.Y.: Building Disease-Specific Drug-Protein Connectivity Maps from Molecular Interaction Networks and PubMed Abstracts. PLoS Comput. Biol. 5(7), e1000450 (2009)

    Google Scholar 

  6. Kotelnikova, E., Yuryev, A., Mazo, I., Daraselia, N.: Computational approaches for drug repositioning and combination therapy design. J. Bioinform Comput. Biol. 8(3), 593–606 (2010)

    CrossRef  Google Scholar 

  7. Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J., Bork, P.: Drug target identification using side-effect similarity. Science 321, 263–266 (2008)

    CrossRef  Google Scholar 

  8. Yang, L., Agarwal, P.: Systematic Drug Repositioning Based on Clinical Side-Effects. PLoS ONE 6(12), e28025 (2011)

    Google Scholar 

  9. Hu, G., Agarwal, P.: Human Disease-Drug Network Based on Genomic Expression Profiles. PLoS ONE 4(8), e6536 (2009)

    Google Scholar 

  10. Sirota, M., Dudley, J.T., Kim, J., Chiang, A.P., Morgan, A.A., Sweet-Cordero, A., Sage, J., Butte, A.J.: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3(96), 96ra77 (2011)

    Google Scholar 

  11. Luo, H., Chen, J., Shi, L., Mikailov, M., Zhu, H., Wang, K., He, L., Yang, L.: DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 39(Web Server Issue), W492–W498 (2011)

    Google Scholar 

  12. Li, J., Lu, Z.: A New Method for Computational Drug Repositioning Using Drug Pairwise Similarity. In: IEEE International Conference on Bioinformatics and Biomedicine (2012)

    Google Scholar 

  13. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011)

    CrossRef  Google Scholar 

  14. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    MATH  Google Scholar 

  15. Davis, J., Goadrich, M.: The Relationship Between Precision-Recall and ROC Curves. In: International Conference on Machine Learning (2006)

    Google Scholar 

  16. Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Bryant, S.H.: PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37(Web Server Issue), W623–W633 (2009)

    Google Scholar 

  17. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The Chemistry Development Kit (CDK): an open-source Java library for Chemo- and Bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)

    CrossRef  Google Scholar 

  18. Smith, T.F., Waterman, M.S., Burks, C.: The statistical distribution of nucleic acid similarities. Nucleic Acids Res. 13, 645–656 (1985)

    CrossRef  Google Scholar 

  19. Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J., Bork, P.: A side effect resource to capture phenotypic effects of drugs. Molecular Systems Biology 6, 343 (2010)

    CrossRef  Google Scholar 

  20. Pauwels, E., Stoven, V., Yamanishi, Y.: Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 12, 169 (2011)

    CrossRef  Google Scholar 

  21. Pandey, G., Myers, C.L., Kumar, V.: Incorporating functional inter-relationships into protein function prediction algorithms. BMC Bioinformatics 10, 142 (2009)

    CrossRef  Google Scholar 

  22. Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database Issue), D901–D906 (2008)

    Google Scholar 

  23. Olivier, B.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(Database Issue), D267–D270 (2004)

    Google Scholar 

  24. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32(Database Issue), D115–D119 (2004)

    Google Scholar 

  25. Upton, G.: Fisher’s exact test. Journal of the Royal Statistical Society, Series A 155(3), 395–402 (1992)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Healthcare Analytics Research, IBM T.J. Watson Research Center, USA

    Ping Zhang

  2. Computational Biology, GlaxoSmithKline R&D, USA

    Pankaj Agarwal

  3. Center for Data Analytics and Biomedical Informatics, Temple University, USA

    Zoran Obradovic

Authors
  1. Ping Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pankaj Agarwal
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zoran Obradovic
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001, Leuven, Belgium

    Hendrik Blockeel

  2. Fraunhofer IAIS, Department of Knowledge Discovery, Schloss Birlinghoven, University of Bonn, 53754, Sankt Augustin, Germany

    Kristian Kersting

  3. LIACS, Universiteit Leiden, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

    Siegfried Nijssen

  4. Department of Computer Science and Engineering, Czech Technical University, Technicka 2, 16627, Prague 6, Czech Republic

    Filip Železný

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, P., Agarwal, P., Obradovic, Z. (2013). Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013. Lecture Notes in Computer Science(), vol 8190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40994-3_37

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-40994-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40993-6

  • Online ISBN: 978-3-642-40994-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.202.76

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.