Berk, R., Sherman, L., Barnes, G., Kurtz, E., Ahlman, L.: Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning. Journal of the Royal Statistical Society: Series A (Statistics in Society) 172(1), 191–211 (2009)
MathSciNet
CrossRef
Google Scholar
Pearsall, B.: Predictive policing: The future of law enforcement? National Institute of Justice Journal 266, 16–19 (2010)
Google Scholar
Gwinn, S.L., Bruce, C., Cooper, J.P., Hick, S.: Exploring crime analysis. Readings on essential skills, 2nd edn. BookSurge, LLC (2008)
Google Scholar
Ratcliffe, J.H., Rengert, G.F.: Near-repeat patterns in Philadelphia shootings. Security Journal 21(1), 58–76 (2008)
CrossRef
Google Scholar
Dahbur, K., Muscarello, T.: Classification system for serial criminal patterns. Artificial Intelligence and Law 11(4), 251–269 (2003)
CrossRef
Google Scholar
Nath, S.V.: Crime pattern detection using data mining. In: Proceedings of Web Intelligence and Intelligent Agent Technology Workshops, pp. 41–44 (2006)
Google Scholar
Brown, D.E., Hagen, S.: Data association methods with applications to law enforcement. Decision Support Systems 34(4), 369–378 (2003)
CrossRef
Google Scholar
Lin, S., Brown, D.E.: An outlier-based data association method for linking criminal incidents. In: Proceedings of the Third SIAM International Conference on Data Mining. (2003)
Google Scholar
Ng, V., Chan, S., Lau, D., Ying, C.M.: Incremental mining for temporal association rules for crime pattern discoveries. In: Proceedings of the 18th Australasian Database Conference, vol. 63, pp. 123–132 (2007)
Google Scholar
Buczak, A.L., Gifford, C.M.: Fuzzy association rule mining for community crime pattern discovery. In: ACM SIGKDD Workshop on Intelligence and Security Informatics (2010)
Google Scholar
Wang, G., Chen, H., Atabakhsh, H.: Automatically detecting deceptive criminal identities. Communications of the ACM 47(3), 70–76 (2004)
CrossRef
Google Scholar
Chen, H., Chung, W., Xu, J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general framework and some examples. Computer 37(4), 50–56 (2004)
CrossRef
Google Scholar
Hauck, R.V., Atabakhsb, H., Ongvasith, P., Gupta, H., Chen, H.: Using COPLINK to analyze criminal-justice data. Computer 35(3), 30–37 (2002)
CrossRef
Google Scholar
Short, M.B., D’Orsogna, M.R., Pasour, V.B., Tita, G.E., Brantingham, P.J., Bertozzi, A.L., Chayes, L.B.: A statistical model of criminal behavior. Mathematical Models and Methods in Applied Sciences 18, 1249–1267 (2008)
MathSciNet
CrossRef
MATH
Google Scholar
Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. Journal of the American Statistical Association 106(493) (2011)
Google Scholar
Short, M.B., D’Orsogna, M., Brantingham, P., Tita, G.: Measuring and modeling repeat and near-repeat burglary effects. Journal of Quantitative Criminology 25(3), 325–339 (2009)
CrossRef
Google Scholar
Eck, J., Chainey, S., Cameron, J., Wilson, R.: Mapping crime: Understanding hotspots. Technical report, National Institute of Justice, NIJ Special Report (August 2005)
Google Scholar
Basu, S., Banerjee, A., Mooney, R.: Semi-supervised clustering by seeding. In: International Conference on Machine Learning, pp. 19–26 (2002)
Google Scholar
Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Int’l Conf. on Machine Learning, pp. 577–584 (2001)
Google Scholar
Ghahramani, Z., Heller, K.: Bayesian sets. In: Proceedings of Neural Information Processing Systems (2005)
Google Scholar
Letham, B., Rudin, C., Heller, K.: Growing a list. Data Mining and Knowledge Discovery (to appear, 2013)
Google Scholar
Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A comparative evaluation. In: Proceedings of the Eighth SIAM International Conference on Data Mining, pp. 243–254 (2008)
Google Scholar
Criminal Justice Policy Research Institute: Residential burglary in Portland, Oregon. Hatfield School of Government, Criminal Justice Policy Research Institute,
http://www.pdx.edu/cjpri/time-of-dayday-of-week-0
Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Springer (2005)
Google Scholar
National Law Enforcement and Corrections Technology Center: ‘Calculate’ repeat crime. TechBeat (Fall 2008)
Google Scholar