Skip to main content

Learning to Detect Patterns of Crime

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8190)


Our goal is to automatically detect patterns of crime. Among a large set of crimes that happen every year in a major city, it is challenging, time-consuming, and labor-intensive for crime analysts to determine which ones may have been committed by the same individual(s). If automated, data-driven tools for crime pattern detection are made available to assist analysts, these tools could help police to better understand patterns of crime, leading to more precise attribution of past crimes, and the apprehension of suspects. To do this, we propose a pattern detection algorithm called Series Finder, that grows a pattern of discovered crimes from within a database, starting from a “seed” of a few crimes. Series Finder incorporates both the common characteristics of all patterns and the unique aspects of each specific pattern, and has had promising results on a decade’s worth of crime pattern data collected by the Crime Analysis Unit of the Cambridge Police Department.


  • Pattern detection
  • crime data mining
  • predictive policing


  1. Berk, R., Sherman, L., Barnes, G., Kurtz, E., Ahlman, L.: Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning. Journal of the Royal Statistical Society: Series A (Statistics in Society) 172(1), 191–211 (2009)

    MathSciNet  CrossRef  Google Scholar 

  2. Pearsall, B.: Predictive policing: The future of law enforcement? National Institute of Justice Journal 266, 16–19 (2010)

    Google Scholar 

  3. Gwinn, S.L., Bruce, C., Cooper, J.P., Hick, S.: Exploring crime analysis. Readings on essential skills, 2nd edn. BookSurge, LLC (2008)

    Google Scholar 

  4. Ratcliffe, J.H., Rengert, G.F.: Near-repeat patterns in Philadelphia shootings. Security Journal 21(1), 58–76 (2008)

    CrossRef  Google Scholar 

  5. Dahbur, K., Muscarello, T.: Classification system for serial criminal patterns. Artificial Intelligence and Law 11(4), 251–269 (2003)

    CrossRef  Google Scholar 

  6. Nath, S.V.: Crime pattern detection using data mining. In: Proceedings of Web Intelligence and Intelligent Agent Technology Workshops, pp. 41–44 (2006)

    Google Scholar 

  7. Brown, D.E., Hagen, S.: Data association methods with applications to law enforcement. Decision Support Systems 34(4), 369–378 (2003)

    CrossRef  Google Scholar 

  8. Lin, S., Brown, D.E.: An outlier-based data association method for linking criminal incidents. In: Proceedings of the Third SIAM International Conference on Data Mining. (2003)

    Google Scholar 

  9. Ng, V., Chan, S., Lau, D., Ying, C.M.: Incremental mining for temporal association rules for crime pattern discoveries. In: Proceedings of the 18th Australasian Database Conference, vol. 63, pp. 123–132 (2007)

    Google Scholar 

  10. Buczak, A.L., Gifford, C.M.: Fuzzy association rule mining for community crime pattern discovery. In: ACM SIGKDD Workshop on Intelligence and Security Informatics (2010)

    Google Scholar 

  11. Wang, G., Chen, H., Atabakhsh, H.: Automatically detecting deceptive criminal identities. Communications of the ACM 47(3), 70–76 (2004)

    CrossRef  Google Scholar 

  12. Chen, H., Chung, W., Xu, J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general framework and some examples. Computer 37(4), 50–56 (2004)

    CrossRef  Google Scholar 

  13. Hauck, R.V., Atabakhsb, H., Ongvasith, P., Gupta, H., Chen, H.: Using COPLINK to analyze criminal-justice data. Computer 35(3), 30–37 (2002)

    CrossRef  Google Scholar 

  14. Short, M.B., D’Orsogna, M.R., Pasour, V.B., Tita, G.E., Brantingham, P.J., Bertozzi, A.L., Chayes, L.B.: A statistical model of criminal behavior. Mathematical Models and Methods in Applied Sciences 18, 1249–1267 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. Journal of the American Statistical Association 106(493) (2011)

    Google Scholar 

  16. Short, M.B., D’Orsogna, M., Brantingham, P., Tita, G.: Measuring and modeling repeat and near-repeat burglary effects. Journal of Quantitative Criminology 25(3), 325–339 (2009)

    CrossRef  Google Scholar 

  17. Eck, J., Chainey, S., Cameron, J., Wilson, R.: Mapping crime: Understanding hotspots. Technical report, National Institute of Justice, NIJ Special Report (August 2005)

    Google Scholar 

  18. Basu, S., Banerjee, A., Mooney, R.: Semi-supervised clustering by seeding. In: International Conference on Machine Learning, pp. 19–26 (2002)

    Google Scholar 

  19. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Int’l Conf. on Machine Learning, pp. 577–584 (2001)

    Google Scholar 

  20. Ghahramani, Z., Heller, K.: Bayesian sets. In: Proceedings of Neural Information Processing Systems (2005)

    Google Scholar 

  21. Letham, B., Rudin, C., Heller, K.: Growing a list. Data Mining and Knowledge Discovery (to appear, 2013)

    Google Scholar 

  22. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A comparative evaluation. In: Proceedings of the Eighth SIAM International Conference on Data Mining, pp. 243–254 (2008)

    Google Scholar 

  23. Criminal Justice Policy Research Institute: Residential burglary in Portland, Oregon. Hatfield School of Government, Criminal Justice Policy Research Institute,

  24. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Springer (2005)

    Google Scholar 

  25. National Law Enforcement and Corrections Technology Center: ‘Calculate’ repeat crime. TechBeat (Fall 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Rudin, C., Wagner, D., Sevieri, R. (2013). Learning to Detect Patterns of Crime. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013. Lecture Notes in Computer Science(), vol 8190. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40993-6

  • Online ISBN: 978-3-642-40994-3

  • eBook Packages: Computer ScienceComputer Science (R0)