Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
MATH
CrossRef
Google Scholar
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)
MathSciNet
MATH
CrossRef
Google Scholar
Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the ACM 23(4), 214–229 (1980)
MathSciNet
MATH
CrossRef
Google Scholar
Bronstein, M.M., Fua, P.: LDAHash: Improved matching with smaller descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(1), 66–78 (2012)
CrossRef
Google Scholar
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (2002)
Google Scholar
Chen, J., Fang, H., Saad, Y.: Fast approximate kNN graph construction for high dimensional data via recursive lanczos bisection. The Journal of Machine Learning Research 10, 1989–2012 (2009)
MathSciNet
MATH
Google Scholar
Cheng, B., Yang, J.C., Yan, S.C., Fu, Y., Huang, T.: Learning with l1-graph for image analysis. IEEE Transaction on Image Processing 19, 858–866 (2010)
MathSciNet
CrossRef
Google Scholar
Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.-T.: NUS-WIDE: A real-world web image database from national university of singapore. In: Proceedings of ACM Conference on Image and Video Retrieval (2009)
Google Scholar
Daitch, S.I., Kelner, J.A., Spielman, D.A.: Fitting a graph to vector data. In: Proceedings of the International Conference on Machine Learning (2009)
Google Scholar
Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Annual Symposium on Computational Geometry (2004)
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)
Google Scholar
Dong, W., Charikar, M., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the International Conference on World Wide Web (2011)
Google Scholar
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of the International Conference on Very Large Data Bases (1999)
Google Scholar
Gorisse, D., Cord, M., Precioso, F.: Locality-sensitive hashing for chi2 distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(2), 402–409 (2012)
CrossRef
Google Scholar
Goyal, A., Daumé III, H., Guerra, R.: Fast large-scale approximate graph construction for nlp. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (2012)
Google Scholar
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report, California Institute of Technology (2007)
Google Scholar
Herbster, M., Pontil, M., Galeano, S.R.: Fast predciton on a tree. In: Advances in Neural Information Processing Systems (2008)
Google Scholar
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Annual ACM Symposium on Theory of Computing (1998)
Google Scholar
Jebara, T., Wang, J., Chang, S.F.: Graph construction and b-matching for semi-supervised learning. In: Proceedings of the International Conference on Machine Learning (2009)
Google Scholar
Kong, W., Li, W.J.: Isotropic hashing. In: Advances in Neural Information Processing Systems (2012)
Google Scholar
Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: IEEE International Conference on Computer Vision (2009)
Google Scholar
Kulis, B., Jain, P., Grauman, K.: Fast similarity search for learned metrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2143–2157 (2009)
CrossRef
Google Scholar
Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: Proceedings of the International Conference on Machine Learning (2011)
Google Scholar
Salakhutdinov, R., Hinton, G.: Semantic hashing. International Journal of Approximate Reasoning 50(7), 969–978 (2009)
CrossRef
Google Scholar
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2002)
Google Scholar
Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Information Processing Letters 40(4), 175–179 (1991)
MATH
CrossRef
Google Scholar
Vaidya, P.M.: An O(nlogn) algorithm for the all-nearest-neighbors problem. Discrete & Computational Geometry 4(1), 101–115 (1989)
MathSciNet
MATH
CrossRef
Google Scholar
Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)
MathSciNet
CrossRef
Google Scholar
Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Google Scholar
Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., Li, S.: Scalable k-NN graph construction for visual descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Google Scholar
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems (2008)
Google Scholar
Zhang, Y.M., Huang, K., Liu, C.L.: Fast and robust graph-based transductive learning via minimum tree cut. In: IEEE International Conference on Data Mining (2011)
Google Scholar
Zhu, X.: Semi-supervised learning literature survey. Technical report, Computer Science, University of Wisconsin-Madison (2008)
Google Scholar
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning (2003)
Google Scholar