A Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data

  • Gerben K. D. de Vries
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8188)

Abstract

In this paper we introduce an approximation of the Weisfeiler-Lehman graph kernel algorithm aimed at improving the computation time of the kernel when applied to Resource Description Framework (RDF) data. Typically, applying graph kernels to RDF is done by extracting subgraphs from a large RDF graph and computing the kernel on this set of subgraphs. In contrast, our algorithm computes the Weisfeiler-Lehman kernel directly on the large RDF graph, but still retains the subgraph information. We show that this algorithm is faster than the regular Weisfeiler-Lehman kernel for RDF data and has at least the same performance. Furthermore, we show that our method has similar or better performance, and is faster, than other recently introduced graph kernels for RDF.

Keywords

Resource Description Framework (RDF) Graph Kernels Weisfeiler-Lehman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph kernels. Journal of Machine Learning Research 11, 1201–1242 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)MathSciNetGoogle Scholar
  5. 5.
    Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 134–148. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bicer, V., Tran, T., Gossen, A.: Relational kernel machines for learning from graph-structured RDF data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 47–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Fanizzi, N., d’Amato, C.: A declarative kernel for \(\mathcal{ALC}\) concept descriptions. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 322–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Fanizzi, N., d’Amato, C., Esposito, F.: Statistical learning for inductive query answering on OWL ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 195–212. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Rettinger, A., Nickles, M., Tresp, V.: Statistical relational learning with formal ontologies. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 286–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) NIPS, pp. 1660–1668. Curran Associates, Inc. (2009)Google Scholar
  12. 12.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999)Google Scholar
  13. 13.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  14. 14.
    Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The SWRC ontology - semantic web for research communities. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 218–231. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerben K. D. de Vries
    • 1
  1. 1.System and Network Engineering Group, Informatics InstituteUniversity of AmsterdamThe Netherlands

Personalised recommendations