Skip to main content

Laser-Matter Interaction Above the Plasma Ignition Threshold Intensity

  • Chapter
  • First Online:
Book cover Pulsed Laser Ablation of Solids

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 53))

Abstract

In this chapter we present the process of laser-matter interaction above the plasma ignition threshold intensity. The physics of the pulsed laser ablation process at high intensities is very complex since it involves, besides direct laser-solid interactions, the process of plasma formation and expansion, and the laser-plasma interaction. Inverse Bremsstrahlung and photoionization processes is considered to be the main absorption mechanisms of the laser light within the ablation plumes produced on metallic targets. Plasma kinetics including electron impact excitation/ionization and recombination processes, as well as the energy transfer from electrons to ions and neutral species are considered. Section 4.1 presents the main phenomena involved in production of the ablation plasma and in laser-plasma interaction during PLA: plasma formation and evolution. In this section, plasma heating, self focusing, critical density, shielding, and plume expansion is discussed. Interaction of plasma plume with obstacles is also treated in Sect. 4.1.3. Experimental methods for analyzing the main phenomena involved in laser-plasma interaction (i.e. optical and mass spectroscopy, high speed imaging) are presented in Sect. 4.2. The most important parameters which characterize the laser-ablated plumes (density and the temperature) are usually determined by optical techniques (i.e. interferometry, Thomson-scattering and plasma spectroscopy) which can be used to reveal the characteristic features of plasma, as well as to estimate and describe qualitatively and quantitatively its properties. The theoretical models for describing the laser-plasma interaction allow one to estimate the spatial–temporal distribution of the plasma parameters such as temperature, density and pressure. Among the models describing the dynamics of the expanding ablation vapour/plasma plume, Monte Carlo simulations and hydrodynamic equations approaches have been widely used. The numerical results on the ablation plasma were validated by comparison to the experimental data obtained by using optical emission and absorption spectroscopy, mass spectrometry, time-of-flight and charge collection measurements. Section 4.3 presents in more detail theoretical results obtained within the photo-thermal model on the characteristics of the ablation plasma in relation to the ablation rate in nanosecond irradiation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  2. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, Characterization of laser-ablation plasmas. J. Phys. B: At. Mol. Opt. Phys. 32, 131–172 (1999)

    Article  ADS  Google Scholar 

  3. N. Bulgakova, A. Bulgakov, L. Babich, Energy balance of pulsed laser ablation: thermal model revised. Appl. Phys. A 79, 1323–1326 (2004)

    ADS  Google Scholar 

  4. B. Wu, Y. Shin, Modelling of nanosecond laser ablation with vapor plasma formation. J. Appl.Phys. 99, 084310 (2006)

    Article  ADS  Google Scholar 

  5. N. Vasantgadkar, U. Bhandarkar, S. Joshi, A finite element model to predict the ablation depth in pulsed laser ablation. Thin Solid Films 519, 14211430 (2010)

    Article  Google Scholar 

  6. R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, F. Yang, M. Sun, Improved thermal model and its application in UV high-power pulsed laser ablation of metal target. Solid State Commun. 145, 556–560 (2008)

    Article  ADS  Google Scholar 

  7. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Laser ablation for analytical sampling: what can we learn from modeling? Spectrochemica Acta Part B 58, 1867–1893 (2003)

    Article  ADS  Google Scholar 

  8. R.K. Singh, J. Narayan, Mater. Sci. Eng B 3, 217 (1989)

    Article  Google Scholar 

  9. A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  10. A. Peterlongo, A. Miotello, R. Kelly, Phys. Rev. E 50, 4716 (1994)

    Article  ADS  Google Scholar 

  11. N. Arnold, B. Luk’yanchuk, N. Bityurin, Appl. Surf. Sci. 127–129, 184 (1998)

    Article  Google Scholar 

  12. A.A. Andreev, V.I. Bayanov, V.I. Kryzhanoskii, A.G. Samsonon, N.A. Solov’ev, Sov. Phys.-Tech. Phys. 37, 158 (1992)

    Google Scholar 

  13. D.I. Rosen, J. Mitteldorf, G. Kothandaraman, A.N. Pirri, E.R. Pugh, J. Appl. Phys. 53, 3190 (1982)

    Article  ADS  Google Scholar 

  14. C.R. Phypps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Hayes, H.S. Steele, T.R. King, J. Appl. Phys. 64, 1083 (1988)

    Article  ADS  Google Scholar 

  15. S. Amoruso, V. Berardi, R. Bruzzese, N. Spinelli, X. Wang, Appl. Surf. Sci. 127–129, 953 (1998)

    Article  Google Scholar 

  16. M. Stafe, Theoretical photo-thermo-hydrodynamic approach to the laser ablation of metals. J. Appl. Phys. 112, 123112 (2012)

    Article  ADS  Google Scholar 

  17. Nadezhda M. Bulgakova, Anton B. Evtushenko, Yuri G. Shukhov, Sergey I. Kudryashov, Alexander V. Bulgakov, Role of laserinduced plasma in ultradeep drilling of materials by nanosecond laser pulses. Appl. Surf. Sci. 257, 10876–10882 (2011)

    Article  ADS  Google Scholar 

  18. Laszlo Balazs, Renaat Gijbels, Akos Vertes, Expansion of laser-generated plumes near the plasma ignition threshold. Anal. Chem. 63, 314 (1991)

    Article  Google Scholar 

  19. A. Vertes, M. De Wolf, P. Juhasz, R. Gijbels, Anal. Chem. 61, 1029 (1989)

    Article  Google Scholar 

  20. X. Mao, R.E. Russo, Appl. Phys. A 64, 1 (1997)

    Article  ADS  Google Scholar 

  21. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 79, 7205 (1996)

    Article  ADS  Google Scholar 

  22. A. Caruso, R. Gratton, Plasma Phys. 10, 867 (1968)

    Article  ADS  Google Scholar 

  23. R.E. Kidder, Nucl. Fus. 8, 3 (1968)

    Article  Google Scholar 

  24. R. Jordan, C. Cole, J.G. Lunney, K. Mackay, D. Givord, Appl. Surf. Sci. 86, 24 (1995)

    Article  ADS  Google Scholar 

  25. J.G. Lunney, Appl. Surf. Sci. 86, 79 (1995)

    Article  ADS  Google Scholar 

  26. S. Fahler, H.U. Krebs, Appl. Surf. Sci. 96–98, 61 (1996)

    Article  Google Scholar 

  27. B. Wollf-Rottke, J. Ihlemann, H. Schmidt, A. Scholl, Appl. Phys. A 60, 13 (1995)

    Article  ADS  Google Scholar 

  28. V.N. Tokarev, J.G. Lunney, W. Marine, M. Sentis, J. Appl. Phys. 78, 1241 (1995)

    Article  ADS  Google Scholar 

  29. R. Jordan, J.G. Lunney, Appl. Surf. Sci. 127–129, 215 (1998)

    Google Scholar 

  30. H. Schittenelm, G. Callies, P. Berger, H. Hugel, J. Phys. D: Appl. Phys. 29, 1564 (1996)

    Article  ADS  Google Scholar 

  31. S. Amoruso, M. Armenante, V. Berardi, R. Bruzzese, N. Spinelli, Absorption and saturation mechanisms in aluminium laser ablated plasmas. Appl. Phys. A 65, 265 (1997)

    Article  ADS  Google Scholar 

  32. R.K. Singh, J. Viatella, J. Appl. Phys. 75, 1204 (1994)

    Article  ADS  Google Scholar 

  33. J.J. Chang, B.E. Warner, Laser-plasma interaction during visible-laser ablation of methods. Appl. Phys. Lett. 69, 473 (1996)

    Article  ADS  Google Scholar 

  34. K.H. Song, X. Xu, Mechanisms of absorption in pulsed excimer laser-induced plasma. Appl. Phys. A 65, 477 (1997)

    Article  ADS  Google Scholar 

  35. J.G. Lunney, R. Jordan, Pulsed laser ablation of metals. Appl. Surf. Sci. 127–129, 941 (1998)

    Article  Google Scholar 

  36. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. (New York: Academic 1967)

    Google Scholar 

  37. J.F. Ready, Effects of High-Power Laser Radiation (Academic Press, New York, 1971)

    Google Scholar 

  38. J. Hermann, C. Boulmer-Leborgne, I.N. Mihailescu, B. Dubrueil, J. Appl. Phys. 73, 1091 (1993)

    Article  ADS  Google Scholar 

  39. R.W. Dreyfus, Surf. Sci. 283, 177 (1993)

    Article  ADS  Google Scholar 

  40. P.E. Dyer, Electrical characterization of plasma generation in KrF laser Cu ablation. Appl. Phys. Lett. 55, 1630 (1989)

    Article  ADS  Google Scholar 

  41. R. Tambay, R. Singh, R.W. Thareja, Studies on recombining Al?plasma using 1.06, 0.532, 0.355, and 0.266 ?m laser radiation. J. Appl. Phys. 72, 1197 (1992)

    Article  ADS  Google Scholar 

  42. J.S. Lash, R.M. Gilgenbach, H.L. Spindler, Ionization dynamics of iron plumes generated by laser ablation versus a laser?ablation?assisted?plasma discharge ion source. J. Appl. Phys. 79, 2287 (1996)

    Article  ADS  Google Scholar 

  43. A. Lenk, B. Schultrich, T. Witke, Diagnostics of laser ablation and laser induced plasmas. Appl. Surf. Sci. 106, 473 (1996)

    Article  ADS  Google Scholar 

  44. A. Marcu, C. Grigoriu, W. Jiang, K. Yatsui, Plume behaviour and thin film deposition by laser ablation using an hellicoidal shadow mask, eds. by T. Necsoiu, M.R.-D.C. Dumitras, Sixth Symposium of Optoelectronics, Proc. SPIE 4068, 577 (1999)

    Google Scholar 

  45. A. Marcu, C. Grigoriu, K. Yatsui, Particles movement and surface quality in PLD/PR systems, Appl. Surf. Sci. 252, 4733 (2006)

    Google Scholar 

  46. S. Amoruso, R. Bruzzese, R. Velotta, N. Spinelli, X. Wang, XeF excimer laser ablation of metallic targets probed by energy-selective time-of-flight mass spectrometry. Appl. Surf. Sci. 138–139, 250 (1999)

    Article  Google Scholar 

  47. S.V. Garnov, V.I. Konov, A.A. Malyutin, O.G. Tsarkova, I.S. Yatskovsky, F. Dausinger, High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses. Laser Phys. 13, 386–397 (2003)

    Google Scholar 

  48. M.S. Tillack, K.L. Sequoia, Y. Tao, Geometric effects on EUV emissions in spherical and planar targets. J. Phys.: Conf. Ser. 112, 042060 (2008)

    Google Scholar 

  49. P. Hariharan, Optical Interferometry (Academic Press, New York, 2003)

    Google Scholar 

  50. Y. Hamamoto, E. Tomita, T. Okada, The measurement of the transient temperature of gas by laser interferometry. JSME Int. J. 32, 247–251 (1989)

    Google Scholar 

  51. A. Al-Azzawi, Light and Optics: Principles and Practices (CRC Press, Boca Raton, 2007)

    Google Scholar 

  52. A.H. Ali, N. Bidin, Plasma formation induced by a Q-switched Nd:YAG laser, J. Appl. Sci. 11, 1431–1435 (2011)

    Google Scholar 

  53. D. Froula, J. Sheffield, S.H. Glenzer, N.C. Luhmann, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Academic Press, Second Edition, 2011)

    Google Scholar 

  54. B.S. Bauer, R.P. Drake, K.G. Estabrook, R.G. Watt, M.D. Wilke, S.A. Baker, Detection of ion plasma waves by collective thomson scattering. Phys. Rev. Lett. 74, 3604–3607 (1995)

    Article  ADS  Google Scholar 

  55. D. Froula, P. Davis, L. Divol, J. Ross, N. Meezan, D. Price, S. Glenzer, C. Rousseaux, Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas. Phys. Rev. Lett. 95, 195005–195009 (2005)

    Article  ADS  Google Scholar 

  56. J.F. Myatt, W. Rozmus, VYu. Bychenkov, V.T. Tikhonchuk, Thomson scattering from ion acoustic waves in laser plasmas. Phys. Rev. E 57, 3383–3391 (1998)

    Google Scholar 

  57. W. Rozmus, S.H. Glenzer, K.G. Estabrook, H.A. Baldis, B.J. Macgowan, Modeling of thomson scattering spectra in high-Z, laser-produced plasmas. Astrophys. J. Suppl. Ser. 127, 459–463 (2000)

    Article  ADS  Google Scholar 

  58. D.H. Froula, L.M. Divol, S.H. Glenzer, Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas. Phys. Rev. Lett. 88, 105003–105010 (2002)

    Article  ADS  Google Scholar 

  59. H. R. Griem, Principles of plasma spectroscopy, Cambridge University Press, Cambridge (2005)

    Google Scholar 

  60. C. Negutu, M. Stafe, S.S. Ciobanu, N.N. Puscas, Characterization of the laser-ablation plasmas using optical spectroscopy and opto-acoustic methods. J. Optoelectron. Adv. Mater. 13, 812–820 (2011)

    Google Scholar 

  61. G. Bekefi, C. Deutsch, B. Yaakobi, in Principles of Laser Plasmas, ed. by G. Bekefi (Wiley, New York, 1976)

    Google Scholar 

  62. V.S. Burakov, S.N. Raikov, N.V. Tarasenko, Laser absorption and fluorescence diagnostics of a plasma. J.Appl. Spectros. 64, 293–303 (1997)

    Article  ADS  Google Scholar 

  63. F. Caridi, L. Torrisi, L. Giuffrida, Time-of-flight and UV spectroscopy characterization of laser-generated plasma. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 268, 499–505 (2010)

    Article  ADS  Google Scholar 

  64. H. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  65. V.S. Burakov, A.V. Butsen, N.V. Tarasenko, Laser-induced plasmas in liquids for nanoparticle synthesis. J. Appl. Spectrosc. 77, 386–393 (2010)

    Article  ADS  Google Scholar 

  66. M. Guilhaus, Essential elements of time-of-flight mass spectrometry in combination with the inductively coupled plasma ion source. Spectrochim. Acta Part B 55, 1511–1525 (2000)

    Article  ADS  Google Scholar 

  67. B.A. Mamyrin, Laser assisted reflectron time-of-flight mass spectrometry. Int. J. Mass Spectrom. Ion Proc. 131, 1–19 (1994)

    Article  ADS  Google Scholar 

  68. S. Dadras, M.J. Torkamany, J. Sabbaghzadeh, Characterization and comparison of iron and aluminium laser ablation with time-integrated emission spectroscopy of induced plasma. J. Phys. D: Appl. Phys. 41, 225202 (2008)

    Article  ADS  Google Scholar 

  69. R.W.P. McWhirter, Plasma Diagnostic Techniques (Leonard S L, Academic Press, New York, Ed. Huddlestone R H, 1965)

    Google Scholar 

  70. http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  71. A.A. Moruzov, Appl. Phys. A 79, 997–999 (2004)

    ADS  Google Scholar 

  72. V.P. Zharov, V.S. Letokhov, Laser Optoacoustic Spectroscopy (Springer, Berlin, 1986)

    Book  Google Scholar 

  73. C. Porneala, D.A. Willis, Effect of the dielectric transition on laser-induced phase explosion in metals. Int. J. Heat Mass Transfer 49, 1928–1936 (2006)

    Article  MATH  Google Scholar 

  74. J. Cheng, W. Perrie, B. Wu, S. Tao, S.P. Edwardson, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 255, 8171–8175 (2009)

    Article  ADS  Google Scholar 

  75. S. Amoruso, Modelling of laser produced plasma and time-of-flight experiments in UV laser ablation of aluminium targets. Appl. Surf. Sci. 138–139, 292 (1999)

    Article  Google Scholar 

  76. M.H. Mahdieh, H. Hosseini Shokoh, Appl. Phys. A 106, 995–1004 (2012)

    Article  ADS  Google Scholar 

  77. C. Porneala, D.A. Willis, Observation of nanosecond laser-induced phase explosion in aluminum. Appl. Phys. Lett. 89, 211121 (2006)

    Article  ADS  Google Scholar 

  78. I. Egry, J. Brillo, D. Holland-Moritz, and Yu. Plevachuk, Mater. Sci. Eng., A 495, 14–18 (2008).

    Google Scholar 

  79. M. Stafe, C. Negutu, Ablation plasma spectroscopy for monitoring in real-time the pulsed laser ablation of metals. Plasma Chem. Plasma Process. 32, 643–653 (2012)

    Article  Google Scholar 

  80. S.K. Godunov, A.V. Zabrodin, G.P. Prokopov, USSR Comput. Math. Math. Whys (EngL Transl.) 6, 1020 (1981)

    Google Scholar 

  81. A. Vertes, P. Juhasz, M. De Wolf, R. Gijbels, Scan. Microsc. 2, 1853 (1988)

    Google Scholar 

  82. A. Bogaerts, Z. Chen, Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation, Spectrochimica Acta Part B 60, 1280–1307 (2005)

    Google Scholar 

  83. R.K. Singh, Transient plasma shielding effects during pulsed laser ablation of materials, J. Electron. Mater. 25, 125 (1996)

    Google Scholar 

  84. A. Vertes, M. De Wolf, P. Juhasz, R. Gijbels, Threshold conditions of plasma ignition in laser ionization mass spectrometry of solids, Anal. Chem. 61, 1029 (1989)

    Google Scholar 

  85. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, Characterization of laser ablation plasmas, J. Phys. B: At. Mol. Opt. Phys. 32, 131–172 (1999)

    Google Scholar 

  86. L. Balazs, R. Gijbels, A. Vertes, Expansion of laser-generated plumes near the plasma ignition threshold, Anal. Chem. 63, 314 (1991)

    Google Scholar 

  87. P. Hariharan, Optical interferometry, New York: Academic Press (2003)

    Google Scholar 

  88. N. Mirsaleh-Kohan, W.D. Robertson, R.N. Compton, Electron ionization time-of-flight mass spectrometry: historical review and current applications, Mass Spectrom. Rev. 27, 237–285 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Stafe .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stafe, M., Marcu, A., Puscas, N.N. (2014). Laser-Matter Interaction Above the Plasma Ignition Threshold Intensity. In: Pulsed Laser Ablation of Solids. Springer Series in Surface Sciences, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40978-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40978-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40977-6

  • Online ISBN: 978-3-642-40978-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics