Skip to main content

Nichtlineare Schrödinger-Gleichung

  • Chapter
  • First Online:
Nichtlineare Faseroptik
  • 4569 Accesses

Zusammenfassung

Die Beschreibung der Ausbreitung von Lichtpulsen oder allgemein von zeitvariablen Lichtfeldern in Wellenleitern mit nichtlinearem Brechungsindex kann durch die nichtlineare Schrödinger-Gleichung (NLSGl) erfolgen. Diese wird nachfolgend hergeleitet und erläutert. Lösungsverfahren wie der Split-Step-Fourier-Algorithmus (SSFA) werden vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. G. Agrawal, Nonlinear Fiber Optics, 5. Aufl. (Academic, Amsterdam, 2013)

    Google Scholar 

  2. D.J. Griffiths, Quantenmechanik: Eine Einführung, 2. Aufl. (Pearson, München, 2012)

    Google Scholar 

  3. S. Chernikov, P. Mamyshev, Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 8(8) (1991), 1633–1641

    Article  Google Scholar 

  4. H. Renner, R. Ulrich, J.-P. Elbers, C. Glingener, Einmodenfasern, in Optische Kommunikationstechnik, Hrsg. von E. Voges, K. Petermann (Springer, Berlin, 2002),  81–213

    Google Scholar 

  5. T. Taha, M. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium. IEEE J. Quantum Electron. 25(12), 2674–2682 (1989)

    Article  Google Scholar 

  7. D. Marcuse, C. Manyuk, P. Wai, Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. J. Lightwave Technol. 15(9), 1735–1746 (1997)

    Article  Google Scholar 

  8. A. Galtarossa, C.R. Menyuk (Hrsg.), Polarization Mode Dispersion (Springer, New York, 2005)

    Google Scholar 

  9. A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)

    Article  Google Scholar 

  10. R. Hardin, F. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. Soc. Ind. Appl. Math. Rev. Chron. 15(2), 24–3 (1973)

    Google Scholar 

  11. M. Plura, Schnelle Simulationsmethoden zur Lösung der nichtlinearen Schrödinger-Gleichung. Dissertation, Fakultät für Elektrotechnik und Informationstechnik, Universität Dortmund, 2004

    Google Scholar 

  12. K.-D. Kammeyer, Nachrichtenübertragung, Hrsg. von M. Bossert, N. Fliege, 5. Aufl. (Vieweg, Wiesbaden, 2011)

    Google Scholar 

  13. Y. Bakhturin, Campbell-Hausdorff formula, in Encyclopedia of Mathematics, Hrsg. von U. Rehmann, et al. Online Wiki http://www.encyclopediaofmath.org (Springer, Heidelberg, 2013)

  14. J. Fleck, J. Morris, M. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. 10(2), 129–160 (1976)

    Article  Google Scholar 

  15. F. Francia, Constant step-size analysis in numerical simulation for correct four-wave-mixing power evaluation in optical fiber transmission systems. IEEE Photon. Technol. Lett. 11(1), 69–71 (1999)

    Article  Google Scholar 

  16. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, S. Benedetto, Suppression of spurious tones induced by the split-step method in fiber systems simulation. IEEE Photon. Technol. Lett. 12(5), 489–491 (2000)

    Article  Google Scholar 

  17. O. Sinkin, R. Holzlöhner, J. Zweck, C. Menyuk, Optimization of the split-step Fourier method in modeling optical-fiber communications systems. J. Lightwave Technol. 21(1), 61–68 (2003)

    Article  Google Scholar 

  18. F. Forghieri, Modeling of wavelength multiplexed lightwave systems, Optical Fiber Communication Conference (OFC), Dallas, TX, USA, 1997, TuG1

    Google Scholar 

  19. Q. Zhang, M. Hayee, Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems. J. Lightwave Technol. 26(2), 302–316 (2008)

    Article  Google Scholar 

  20. M. Plura, J. Kissing, M. Gunkel et al., Improved split-step method for efficient fibre simulations. Electron. Lett. 37(5), 286–287 (2001)

    Google Scholar 

  21. M. Plura, J. Kissing, J. Lenge, D. Schulz, E. Voges, Analysis of an improved split-step algorithm for simulating optical transmission systems. Int. J. Electron. Commun. (AEÜ) 56(6), 361–366 (2002)

    Article  Google Scholar 

  22. M. Lax, J. Batteh, G. Agrawal, Channeling of intense electromagnetic beams. J. Appl. Phys. 52(1), 109–125 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Engelbrecht .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelbrecht, R. (2014). Nichtlineare Schrödinger-Gleichung. In: Nichtlineare Faseroptik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40968-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40968-4_6

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40967-7

  • Online ISBN: 978-3-642-40968-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics