Advertisement

Mechanical Response of Porous Materials: The Gurson Model

  • Luiz. A. B. da CundaEmail author
  • Guillermo J. Creus
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In this chapter the formulation for damage known as Gurson model is presented. The original formulation, set in a micro-mechanical context, and different adjustments of phenomenological nature are described. The range of the parameters of the model and their influence on the representation are described. The main computational details for the implementation of the model by means of the finite element method are presented and examples of application are given.

Keywords

Yield Surface Equivalent Plastic Strain Void Nucleation Kinematic Hardening Macroscopic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support of Brazilian agencies CNPq and CAPES is gratefully acknowledged.

References

  1. 1.
    Abu Al-Rub, R., Voyiadjis, G.Z.: A direct finite element implementation of the gradient-dependent theory. Int. J. Numer. Meth. Eng. 63(4), 603–629 (2005)Google Scholar
  2. 2.
    Aravas, N.: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Meth. Eng. 24, 1395–1416 (1987)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aravas, N., McMeeking, R.M.: Microvoid growth and failure in the ligament between a hole and a blunt crack tip. Int. J. Fracture 29, 21–38 (1985)CrossRefGoogle Scholar
  4. 4.
    Aymone, J., Bittencourt, E., Creus, G.: Simulation of 3d metal-forming using an arbitrary Lagrangian-Eulerian finite element method. ASME J. Mater. Process Technol. 110, 218–232 (2001)CrossRefGoogle Scholar
  5. 5.
    Bazant, Z., Belytschko, T., Chang, T.: Continuum model for strain softening. J. Eng. Mech. ASCE 110, 1666–1692 (1984)CrossRefGoogle Scholar
  6. 6.
    Becker, B., Needleman, A.: Effect of yield surface curvature on necking and failure in porous plastic solids. ASME J. Appl. Mech. 53, 491–499 (1986)CrossRefGoogle Scholar
  7. 7.
    Benson, D.: An efficient, accurate, simple ale method for nonlinear fe programs. Comput. Method Appl. M 72, 305–350 (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Besson, J., Guillemer-Neel, C.: An extension of the Green and Gurson models to kinematic hardening. Mech. Mater. 35, 1–18 (2003)CrossRefGoogle Scholar
  9. 9.
    Brown, L.M., Embury, J.D.: The initiation and growth of voids at second phase particles. In: Proceedings of the 3rd International Conference on Strength of Metals and Alloys, London, Institute of Metals, pp. 164–169 (1973)Google Scholar
  10. 10.
    Chu, C., Needleman, A.: Void nucleation effects in biaxially stretched sheets. J. Eng. Mater-T ASME 102, 249–256 (1980)CrossRefGoogle Scholar
  11. 11.
    Coupez, T., Soyriz, N., Chenot, J.L.: 3-d finite element modeling of the forging process with automatic remeshing. J. Mater. Process Technol. 27, 119–133 (1991)CrossRefGoogle Scholar
  12. 12.
    Cunda, L.: Gurson model for ductile damage: computational approach and applications (in Portuguese). PhD thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (2006)Google Scholar
  13. 13.
    Cunda, L.A.B., Creus, G.J.: A note on damage analyses in processes with nonmonotonic loading. Comput. Model. Simul. Eng. 4(4), 300–303 (1999)Google Scholar
  14. 14.
    Cunda, L.A.B., Oliveira, B.F., Creus, G.J.: Plasticity and damage analysis of metal foams under dynamic loading. Materialwiss Werkst 42, 356–364 (2011)CrossRefGoogle Scholar
  15. 15.
    de Borst, R., Muhlhaus, H.: Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Meth. Eng. 35, 521–539 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    de Borst, R., Sluys, L.: Localization in a Cosserat continuum under static and loading conditions. Comput. Meth. Appl. M 90, 805–827 (1991)CrossRefGoogle Scholar
  17. 17.
    Donea, J., Giuliani, S., Halleux, J.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Meth. Appl. M 33, 689–723 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10(2), 157–165 (1952)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fiedler, T.: Numerical and experimental investigation of hollow sphere structures in sandwich panels. PhD thesis, University of Aveiro, Aveiro, Portugal (2007)Google Scholar
  20. 20.
    Giusti, S., Blanco, P., Souza Neto, E., Feijó, R.: An assessment of the Gurson yield criterion by a computational multi-scale approach. Eng. Comput. 26(3–4), 281–301 (2009)Google Scholar
  21. 21.
    Gologanu, M., Leblond, J., Perrin, G.: A micromechanically based Gurson-type model for ductile porous metals including strain gradient effects. ASME Net Shape Process. Powder Mater. Appl. Mech. Div. AMD 216, 47–56 (1995)Google Scholar
  22. 22.
    Gologanu, M., Leblond, J., Perrin, G., Devaux, J.: Recent extensions of Gurson model for porous ductile metals. In: Suquet, P. (ed.) Continuum Micromechanics, CISM Courses and Lectures, vol. 377, pp. 61–130. Springer, Wien (1997)Google Scholar
  23. 23.
    Goya, M., Hagaki, S., Sowerby, R.: Yield criteria for ductile porous solids. JSME Int. J. 35(3), 310–318 (1992)Google Scholar
  24. 24.
    Gratacos, P., Montmitonet, P., Chenot, J.: An integration scheme for Prandtl-Reuss elastoplastic constitutive relations. Int. J. Numer. Meth. Eng. 33, 943–961 (1992)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gurson, A.: Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. PhD thesis, Brown University, Providence, RI (1975)Google Scholar
  26. 26.
    Gurson, A.: Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater-T ASME 99, 2–15 (1977)CrossRefGoogle Scholar
  27. 27.
    Haber, R.: A mixed Eulerian-Lagrangian displacement model for large-deformation analysis in solid mechanics. Comput. Meth. Appl. M 43, 277–292 (1984)CrossRefzbMATHGoogle Scholar
  28. 28.
    Hill, R.: The Mathematical Theory of Plasticity. Oxford Press, Oxford (1950)Google Scholar
  29. 29.
    Huetnik, J.: On the simulation of thermo-mechanical forming processes: A mixed Eulerian-Lagrangian finite element method. PhD thesis, Twente University of Technology, Holland (1986)Google Scholar
  30. 30.
    Hughes, T., Liu, W., Zimmermann, T.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Meth. Appl. M 29, 329–349 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Johnson, J.: Dynamic fracture and spallation in ductile solids. J. Appl. Phys. 52, 2812–2825 (1981)CrossRefGoogle Scholar
  32. 32.
    Kachanov, L.M.: On the time to rupture under creep conditions (in Russ.). Izv AN SSSR Otdelenie tekhnicheskich nauk 8, 26–31 (1958)Google Scholar
  33. 33.
    Kachanov, L.M.: Rupture time under creep conditions. Int. J. Fracture 97(1–4), 11–18 (1999)CrossRefGoogle Scholar
  34. 34.
    Kanninen, M., Popelar, C.: Advanced Fracture Mechanics. Oxford University Press, Oxford (1985)Google Scholar
  35. 35.
    Kikuchi, M., Miyamoto, H., Otoyo, H., Kuroda, M.: Ductile fracture of aluminum alloys. JSME Int. J. 34(1), 90–97 (1991)Google Scholar
  36. 36.
    Klöcker, H., Tvergaard, V.: Growth and coalescence of non-spherical voids in metals deformed at elevated temperature. Int. J. Mech. Sci. 45, 1283–1308 (2003)CrossRefzbMATHGoogle Scholar
  37. 37.
    Koplik, J., Needleman, A.: Void growth and coalescence in porous plastic solids. Int. J. Solids Struct. 24, 835–853 (1988)CrossRefGoogle Scholar
  38. 38.
    Koppenhoefer, K., Dodds Jr, R.: Ductile crack growth in pre-cracked cvn specimens: numerical studies. Nucl. Eng. Des. 180, 221–241 (1998)CrossRefGoogle Scholar
  39. 39.
    Leblond, J., Perrin, G., Devaux, J.: Bifurcation effects in ductile metals with nonlocal damage. J. Appl. Mech. 61(2), 236–242 (1994)CrossRefzbMATHGoogle Scholar
  40. 40.
    Lee, B., Mear, M.: An evalution of gurson’s theory of dilatational plasticity. J. Eng. Mater-T ASME 115, 339–344 (1993)CrossRefGoogle Scholar
  41. 41.
    Lee, J.: Accuracies of numerical solution methods for the pressure-modified von mises model. Int. J. Numer. Meth. Eng. 26, 453–465 (1988)CrossRefzbMATHGoogle Scholar
  42. 42.
    Lee, J., Zhang, Y.: A finite-element work-hardening plasticity model of the uniaxial compression and subsequent failure of porous cylinders including effects of void nucleation and growth - part 1: plastic flow and damage. J. Eng. Mater-T ASME 116, 69–79 (1994)CrossRefGoogle Scholar
  43. 43.
    Lim, T., Smith, B., McDowell, D.: Behaviour of a random hollow sphere metal foam. Acta Mater. 50, 2867–2879 (2002)CrossRefGoogle Scholar
  44. 44.
    Liu, W., Belytschko, T., Chang, H.: An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials. Comput. Meth. Appl. M 58, 227–245 (1986)CrossRefzbMATHGoogle Scholar
  45. 45.
    Mackenzie, J.: The elastic constants of a solid containing spherical holes. Proced. Phys. Soc. 63B, 2–11 (1959)Google Scholar
  46. 46.
    Mazars, J., Bazant, Z.: Cracking and Damage: Strain Localization and Size Effects. Elsevier, Amsterdam (1989)Google Scholar
  47. 47.
    McClintock, F.: A criterion for ductile fracture by the enlargement of holes. J. Appl. Mech. 35, 363–371 (1968)CrossRefGoogle Scholar
  48. 48.
    Mear, M.E., Hutchinson, J.W.: Influence of yield surface curvature on flow localization in dilatant plasticity. Mech. Mat. 4, 395–407 (1985)CrossRefGoogle Scholar
  49. 49.
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. Mater. 21, 571–579 (1973)CrossRefGoogle Scholar
  50. 50.
    Nahshon, K., Hutchinson, J.: Modification of the gurson model for shear failure. Eur. J. Mech. A-Solid 27, 1–17 (2008)CrossRefzbMATHGoogle Scholar
  51. 51.
    Needleman, A.: A material rate dependence and mesh sensitivity in localization problems. Comput. Meth. Appl. Mech. Eng. 67, 69–86 (1988)CrossRefzbMATHGoogle Scholar
  52. 52.
    Needleman, A., Tvergaard, V.: Mesh effects in the analysis of dynamic ductile crack growth. Eng. Fract. Mech. 47(1), 75–91 (1994)CrossRefGoogle Scholar
  53. 53.
    Nielsen, K.L., Tvergaard, V.: Ductile shear failure or plug failure of spot welds modelled by modified gurson model. Eng. Fract. Mech. 77(7), 1031–1047 (2010)CrossRefGoogle Scholar
  54. 54.
    Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Comparison between rve and full mesh approaches for the simulation of compression tests on cellular metals. Materialwiss Werkst 39, 1–6 (2008)Google Scholar
  55. 55.
    Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Hollow sphere structures: a study of mechanical behaviour using numerical simulation. Materialwiss Werkst 40, 144–153 (2009)Google Scholar
  56. 56.
    Oliveira, B.F., Cunda, L.A.B., Creus, G.J.: Modeling of the mechanical behavior of metallic foams: Damage effects at finite strains. Mech. Adv. Mater. Struct. 16, 110–119 (2009)Google Scholar
  57. 57.
    Ortiz, M., Popov, E.: Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int. J. Numer. Meth. Eng. 21, 1561–1576 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Pardoen, T., Hutchinson, J.: An extended model for void growth and coalescence. J. Mech. Phys. Solids 48, 2467–2512 (2000)CrossRefzbMATHGoogle Scholar
  59. 59.
    Perzyna, P.: Internal state variable description of dynamic fracture of ductile solids. Int. J. Solids Struct. 22(7), 797–818 (1986)CrossRefGoogle Scholar
  60. 60.
    Pijaudier-Cabot, G., Bazant, Z.: Nonlocal damage theory. J. Eng. Mech.-ASCE 113, 1512–1533 (1987)CrossRefGoogle Scholar
  61. 61.
    Ponthot, J.P., Hogge, M.: The use of the Eulerian-Lagrangian fem in metal forming applications including contact and adaptive mesh. In: Chandra, N., Reddy, J.N. (eds.) Advances in Finite Deformation Problems in Materials Processing and Structures, ASME, Atlanta, USA, vol ASME Winter Annual Meeting, pp 44–64 (1991)Google Scholar
  62. 62.
    Ramaswamy, S., Aravas, N.: Finite element implementation of gradient plasticity models. Part I: Gradient-dependent yield functions. Comput. Meth. Appl. M 163, 11–32 (1998)Google Scholar
  63. 63.
    Ramaswamy, S., Aravas, N.: Finite element implementation of gradient plasticity models Part II: Gradient-dependent evolution equations. Comput. Meth. Appl. M 163, 33–53 (1998)Google Scholar
  64. 64.
    Reusch, F., Svendsen, B., Klingbeil, D.: Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur. J. Mech. A-Solid 22, 779–792 (2003)Google Scholar
  65. 65.
    Reusch, F., Svendsen, B., Klingbeil, D.: A non-local extension of Gurson-based ductile damage modeling. Comput. Mater. Sci. 26, 219–229 (2003)Google Scholar
  66. 66.
    Rice, J., Tracey, D.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)CrossRefGoogle Scholar
  67. 67.
    Runesson, K., Sture, S., Willam, K.: Integration in computational plasticity. Comput. Struct. 30(1–2), 119–130 (1988)CrossRefzbMATHGoogle Scholar
  68. 68.
    Schreurs, P., Veldpaus, F., Brekelmans, W.: Simulation of forming processes, using the arbitrary Eulerian-Lagrangian formulation. Comput. Meth. Appl. M 58, 19–36 (1986)CrossRefzbMATHGoogle Scholar
  69. 69.
    Simulia (2009) Abaqus, 6.9. Abaqus Theory Manual. Dassault Systèmes Simulia Corp., Providence, RI, USAGoogle Scholar
  70. 70.
    Skallerud, B., Zhang, Z.: On numerical analysis of damage evolution in cyclic elastic-plastic crack growth problems. Fatigue Fracture Eng. Mater. Struct. 23, 81–86 (2001)CrossRefGoogle Scholar
  71. 71.
    Stainier, L.: Modélisation numérique du comportement irréversible des métaux ductiles soumis à grandes déformations avec endommagement. PhD thesis, Universitè de Liège, Liège, Belgium (1996)Google Scholar
  72. 72.
    Steglich, D., Pirondi, A., Bonora, N.: Micromechanical modelling of cyclic plasticity incorporating damage. Int. J. Solids Struct. 42(2), 337–351 (2005)CrossRefzbMATHGoogle Scholar
  73. 73.
    Szentmihali, V., Lange, K., Tronel, Y., Chenot, J.L., Ducloux, R.: 3-d finite element simulation of the cold forging of helical gears. J. Mater. Process Technol. 43, 279–291 (1994)CrossRefGoogle Scholar
  74. 74.
    Thomason, P.: Three-dimensional models for the internal neckings at incipient failure of intervoid matrix in ductile porous solids. Acta Metall. Mater. 33(6), 1079–1085 (1985)CrossRefGoogle Scholar
  75. 75.
    Trillat, M., Pastor, J.: Limit analysis and gurson model. Eur. J. Mech. A-Solid 24, 800–819 (2005)CrossRefzbMATHGoogle Scholar
  76. 76.
    Tvergaard, V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fracture 17, 389–407 (1981)CrossRefGoogle Scholar
  77. 77.
    Tvergaard, V.: Ductile fracture by cavity nucleation between larger voids. J. Mech. Phys. Solids 30(4), 265–286 (1982)Google Scholar
  78. 78.
    Tvergaard, V.: Material failure by void coalescence in localized shear bands. Int. J. Solids Struct. 18(8), 659–672 (1982)Google Scholar
  79. 79.
    Tvergaard, V.: On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982)Google Scholar
  80. 80.
    Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. Mater. 32(1), 157–169 (1984)CrossRefGoogle Scholar
  81. 81.
    Voyiadjis, G., Kattan, P.: A plasticity-damage theory for large deformation of solids. I. Theoretical formulation. Int. J. Eng. Sci. 30(9), 1089–1108 (1992)CrossRefzbMATHGoogle Scholar
  82. 82.
    Wen, J., Huang, Y., Hwang, K., Liu, C., Li, M.: The modified gurson model accounting for the void size effect. Int. J. Plast. 21, 381–395 (2005)CrossRefzbMATHGoogle Scholar
  83. 83.
    Worswick, M., Pick, R.: Void growth in plastically deformed free-cutting brass. J. Appl. Mech. 58, 631–638 (1991)CrossRefGoogle Scholar
  84. 84.
    Zavaliangos, A., Anand, A.L.: Thermal aspects of shear localization in microporous viscoplastic solids. Int. J. Numer. Meth. Eng. 33, 595–634 (1992)CrossRefzbMATHGoogle Scholar
  85. 85.
    Zhang, Z.: Explicit consistent tangent moduli with a return mapping algorithm for pressure dependent elastoplasticity models. Comput. Meth. Appl. M 121, 29–44 (1995)Google Scholar
  86. 86.
    Zhang, Z.: On the accuracies of numerical integration algorithms for Gurson-based pressure-dependent elastoplastic constitutive models. Comput. Meth. Appl. M 121, 15–28 (1995)Google Scholar
  87. 87.
    Zhang, Z., Niemi, E.: A class of generalized mid-point algorithms for the Gurson-Tvergaard material model. Int. J. Numer. Meth. Eng. 38, 2033–2053 (1995)Google Scholar
  88. 88.
    Zhang, Z., Niemi, E.: A new failure criterion for the Gurson-Tvergaard dilatational constitutive model. Int. J. Fract. 70, 321–334 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Escola de EngenhariaUniversidade Federal do Rio Grande-FURGRio GrandeBrazil
  2. 2.Instituto Mercosul de Estudos AvançadosUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil

Personalised recommendations