Skip to main content

Online PCA with Optimal Regrets

  • Conference paper
Book cover Algorithmic Learning Theory (ALT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8139))

Included in the following conference series:

Abstract

We carefully investigate the online version of PCA, where in each trial a learning algorithm plays a k-dimensional subspace, and suffers the compression loss on the next instance when projected into the chosen subspace. In this setting, we give regret bounds for two popular online algorithms, Gradient Descent (GD) and Matrix Exponentiated Gradient (MEG). We show that both algorithms are essentially optimal in the worst-case when the regret is expressed as a function of the number of trials. This comes as a surprise, since MEG is commonly believed to perform sub-optimally when the instances are sparse. This different behavior of MEG for PCA is mainly related to the non-negativity of the loss in this case, which makes the PCA setting qualitatively different from other settings studied in the literature. Furthermore, we show that when considering regret bounds as a function of a loss budget, MEG remains optimal and strictly outperforms GD.

Next, we study a generalization of the online PCA problem, in which the Nature is allowed to play with dense instances, which are positive matrices with bounded largest eigenvalue. Again we can show that MEG is optimal and strictly better than GD in this setting.

This research was supported by the NSF grant IIS-0917397, while the second author was visiting UC Santa Cruz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abernethy, J., Agarwal, A., Bartlett, P.L., Rakhlin, A.: A stochastic view of optimal regret through minimax duality. In: COLT (2009)

    Google Scholar 

  2. Abernethy, J., Warmuth, M.K., Yellin, J.: When random play is optimal against an adversary. In: COLT, pp. 437–446 (2008)

    Google Scholar 

  3. Azoury, K.S., Warmuth, M.K.: Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning 43(3), 211–246 (2001)

    Article  MATH  Google Scholar 

  4. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., Warmuth, M.K.: How to use expert advice. J. ACM 44(3), 427–485 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.: Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Trans. Neural Netw. Learning Syst. 7(3), 604–619 (1996)

    Article  Google Scholar 

  6. Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.: Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Trans. Neural Netw. Learning Syst. 7(3), 604–619 (1996)

    Article  Google Scholar 

  7. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press (2006)

    Google Scholar 

  8. Helmbold, D.P., Warmuth, M.K.: Learning permutations with exponential weights. Journal of Machine Learning Research 10, 1705–1736 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Herbster, M., Warmuth, M.K.: Tracking the best linear predictor. Journal of Machine Learning Research 1, 281–309 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Kalai, A.T., Vempala, S.: Efficient algorithms for online decision problems. J. Comput. Syst. Sci. 71(3), 291–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gradient descent for linear predictors. Inf. Comput. 132(1), 1–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koolen, W.M., Warmuth, M.K., Kivinen, J.: Hedging structured concepts. In: COLT, pp. 93–105 (2010)

    Google Scholar 

  13. Kuzmin, D., Warmuth, M.K.: Online kernel PCA with entropic matrix updates. In: ICML, pp. 465–472 (2007)

    Google Scholar 

  14. Srebro, N., Sridharan, K., Tewari, A.: On the universality of online mirror descent. In: NIPS, pp. 2645–2653 (2011)

    Google Scholar 

  15. Sridharan, K., Tewari, A.: Convex games in banach spaces. In: Proceedings of the 23nd Annual Conference on Learning Theory (COLT) (2010)

    Google Scholar 

  16. Tsuda, K., Rätsch, G., Warmuth, M.K.: Matrix exponentiated gradient updates for on-line learning and Bregman projections. Journal of Machine Learning Research 6, 995–1018 (2005)

    MATH  Google Scholar 

  17. Warmuth, M.K., Kuzmin, D.: Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension. Journal of Machine Learning Research 9, 2287–2320 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Warmuth, M.K., Liao, J., Rätsch, G.: Totally corrective boosting algorithms that maximize the margin. In: ICML, pp. 1001–1008 (2006)

    Google Scholar 

  19. Warmuth, M.K., Vishwanathan, S.V.N.: Leaving the span. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 366–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Fawcett, T., Mishra, N. (eds.) ICML, pp. 928–936. AAAI Press (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nie, J., Kotłowski, W., Warmuth, M.K. (2013). Online PCA with Optimal Regrets. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2013. Lecture Notes in Computer Science(), vol 8139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40935-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40935-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40934-9

  • Online ISBN: 978-3-642-40935-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics