On Competitive Recommendations

  • Jara Uitto
  • Roger Wattenhofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8139)


We are given an unknown binary matrix, where the entries correspond to preferences of users on items. We want to find at least one 1-entry in each row with a minimum number of queries. The number of queries needed heavily depends on the input matrix and a straightforward competitive analysis yields bad results for any online algorithm. Therefore, we analyze our algorithm against a weaker offline algorithm that is given the number of users and a probability distribution according to which the preferences of the users are chosen. We show that our algorithm has an \(\mathcal{O}(\sqrt{n} \log^2 n)\) overhead in comparison to the weaker offline solution. Furthermore, we show that the corresponding overhead for any online algorithm is \(\Omega(\sqrt{n})\), which shows that the performance of our algorithm is within an \(\mathcal{O}(\log^2 n)\) multiplicative factor from optimal.


Learning Online Recommendation Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: A Competitive Analysis of the List Update Problem with Lookahead. Theoretical Computer Science 197, 95–109 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell Me Who I Am: An Interactive Recommendation System. In: 18th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA (2006)Google Scholar
  3. 3.
    Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Collaboration of Untrusting Peers with Changing Interests. In: Proceedings of the 5th ACM Conference on Electronic Commerce (2004)Google Scholar
  4. 4.
    Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.R.: Improved Recommendation Systems. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005)Google Scholar
  5. 5.
    Azar, Y., Gamzu, I.: Ranking with Submodular Valuations. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1070–1079 (2011)Google Scholar
  6. 6.
    Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of Pipelined Stream Filters. In: ACM SIGMOD International Conference on Management of Data (2004)Google Scholar
  7. 7.
    Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On Chromatic Sums and Distributed Resource Allocation. Information and Computation 140(2), 183–202 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dean, B., Goemans, M., Vondrák, J.: Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity. Mathematics of Operations Research 33, 945–964 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Drineas, P., Kerenidis, I., Raghavan, P.: Competitive Recommendation Systems. In: 34th ACM Symposium on Theory of Computing (STOC) (2002)Google Scholar
  10. 10.
    Feige, U., Lovász, L., Tetali, P.: Approximating Min Sum Set Cover. Algorithmica 40, 219–234 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goemans, M.X., Vondrák, J.: Stochastic Covering and Adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Sally, A., Goldman, R.E.: Schapire, and Ronald L. Rivest. Learning Binary Relations and Total Orders. SIAM Journal of Computing 20(3), 245–271 (1993)Google Scholar
  13. 13.
    Golovin, D., Krause, A.: Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization. Journal of Artificial Intelligence Research (JAIR) 42, 427–486 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grove, E.: Online Bin Packing with Lookahead. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete algorithms (1995)Google Scholar
  15. 15.
    Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with Attribute Costs. In: 37th ACM Symposium on Theory of Computing (STOC) (2005)Google Scholar
  17. 17.
    Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-Optimal Algorithms for Shared Filter Evaluation in Data Stream Systems. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (2008)Google Scholar
  18. 18.
    Munagala, K., Babu, S., Motwani, R., Widom, J.: The Pipelined Set Cover Problem. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 83–98. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jara Uitto
    • 1
  • Roger Wattenhofer
    • 2
  1. 1.ETH ZurichSwitzerland
  2. 2.Microsoft ResearchUSA

Personalised recommendations