Abstract
We study a variant of the standard stochastic multi-armed bandit problem when one is not interested in the arm with the best mean, but instead in the arm maximizing some coherent risk measure criterion. Further, we are studying the deviations of the regret instead of the less informative expected regret. We provide an algorithm, called RA-UCB to solve this problem, together with a high probability bound on its regret.
Keywords
- Multi-armed bandits
- coherent risk measure
- cumulant generative function
- concentration of measure
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Ahmadi-Javid, A.: Entropic value-at-risk: A new coherent risk measure. Journal of Optimization Theory and Applications 155(3), 1105–1123 (2012)
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and bellman’s principle. Annals of Operations Research 152(1), 5–22 (2007)
Audibert, J.-Y., Munos, R., Szepesvári, C.: Exploration-exploitation trade-off using variance estimates in multi-armed bandits. Theoretical Computer Science 410(19), 1876–1902 (2009)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2-3), 235–256 (2002)
Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM Journal on Computing 32, 48–77 (2003)
Borwein, J., Lewis, A.: Duality relationships for entropy-like minimization problem. SIAM Journal on Computation and Optimization 29(2), 325–338 (1991)
Burnetas, A., Katehakis, M.: Optimal adaptive policies for sequential allocation problems. Advances in Applied Mathematics 17(2), 122–142 (1996)
Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., Stoltz, G.: Kullback-leibler upper confidence bounds for optimal sequential allocation. The Annals of Statistics (2013)
Cover, T., Thomas, J.: Elements of Information Theory. John Wiley (1991)
Defourny, B., Ernst, D., Wehenkel, L.: Risk-aware decision making and dynamic programming. In: NIPS Workshop on Model Uncertainty and Risk in RL (2008)
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer (1998)
Denardo, E., Rothblum, U.: Optimal stopping, exponential utility and linear programming. Mathematical Programming 16, 228–244 (1979)
Even-Dar, E., Kearns, M., Wortman, J.: Risk-sensitive online learning. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 199–213. Springer, Heidelberg (2006)
Garivier, A., Cappé, O.: The KL-UCB algorithm for bounded stochastic bandits and beyond. In: Proceedings of the 24th Annual Conference on Learning Theory (2011)
Harari-Kermadec, H.: Vraisemblance empirique généralisée et estimation semi-paramétrique. PhD thesis, Université Paris–Ouest (December 2006)
Honda, J., Takemura, A.: An asymptotically optimal bandit algorithm for bounded support models. In: Proceedings of the 23rd Annual Conference on Learning Theory, Haifa, Israel (2010)
Honda, J., Takemura, A.: An asymptotically optimal policy for finite support models in the multiarmed bandit problem. Machine Learning 85, 361–391 (2011)
Honda, J., Takemura, A.: Finite-time regret bound of a bandit algorithm for the semi-bounded support model. arXiv:1202.2277 (2012)
Howard, R.A., Matheson, J.E.: Risk-sensitive markov decision processes. Management Science 18, 356–369 (1972)
Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: An asymptotically optimal finite-time analysis. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS (LNAI), vol. 7568, pp. 199–213. Springer, Heidelberg (2012)
Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics 6, 4–22 (1985)
Liu, Y., Koenig, S.: An exact algorithm for solving mdps under risk-sensitive planning objectives with one-switch utility functions. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008, Richland, SC, vol. 1, pp. 453–460. International Foundation for Autonomous Agents and Multiagent Systems (2008)
Maillard, O.-A.: Robust risk-averse stochastic multi-armed bandits. Technical Report HAL-INRIA open archive (2013), http://hal.inria.fr/hal-00821670
Maillard, O.-A., Munos, R., Stoltz, G.: A finite-time analysis of multi-armed bandits problems with Kullback-Leibler divergences. In: Proceedings of the 23rd Annual Conference on Learning Theory, Budapest, Hungary (2011)
Markowitz, H.: Portfolio selection. The Journal of Finance 7(1), 77–91 (1952)
Patek, S.D.: On terminating markov decision processes with a risk-averse objective function. Automatica 37(9), 1379–1386 (2001)
Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the American Mathematics Society 58, 527–535 (1952)
Rockafellar, R.T.: Coherent approaches to risk in optimization under uncertainty. Tutorials in Operation Research, 38–61 (2007)
Salomon, A., Audibert, J.-Y.: Robustness of Anytime Bandit Policies (2011), http://hal.archives-ouvertes.fr/hal-00579607
Sani, A., Lazaric, A., Munos, R.: Risk-aversion in multi-armed bandits. In: Proceedings of Advancezs in Neural Information Processing System (2012)
Thompson, W.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25, 285–294 (1933)
Thompson, W.: On the theory of apportionment. American Journal of Mathematics 57, 450–456 (1935)
von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, Princeton Classic Editions. Princeton University Press (1947)
Warmuth, M.K., Kuzmin, D.: Online variance minimization. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 514–528. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maillard, OA. (2013). Robust Risk-Averse Stochastic Multi-armed Bandits. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2013. Lecture Notes in Computer Science(), vol 8139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40935-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-40935-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40934-9
Online ISBN: 978-3-642-40935-6
eBook Packages: Computer ScienceComputer Science (R0)