Abstract
Computer aided medical diagnosis and treatment require an adequate representation of uncertain or imperfect medical data. There are many approaches dealing with such type of data. Pawlak proposed a new method called rough set theory. In this paper, beyond classical and recent methods, the authors propose a basically new approach. It relies on a generalization of rough set theory, namely, the partial covering of the universe of objects. It adequately reflects the partial nature of real–life problems. This new approach called the partial approximation of sets is presented as well as its medical informatics application is demonstrated.
Chapter PDF
Similar content being viewed by others
Keywords
References
Ashby, D.: Bayesian statistics in medicine: a 25 year review. Statistics in Medicine 25(21), 3589–3631 (2006)
Beynon, M., Curry, B., Morgan, P.: The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega 28(1), 37–50 (2000)
Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intensions in the rough set theory. Information Sciences 107(1-4), 149–167 (1998)
Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. The Addison-Wesley Series in Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston (1984)
Csajbók, Z., Mihálydeák, T.: A general set theoretic approximation framework. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 604–612. Springer, Heidelberg (2012)
Csajbók, Z.E.: Approximation of sets based on partial covering. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 144–220. Springer, Heidelberg (2013)
Csajbók, Z.: A security model for personal information security management based on partial approximative set theory. In: Ganzha, M., Paprzycki, M. (eds.) Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT 2010), Wisła, Poland, October 18-20, vol. 5, pp. 839–845. Polskie Towarzystwo Informatyczne – IEEE Computer Society Press, Katowice (2010)
Csajbók, Z.: Simultaneous anomaly and misuse intrusion detections based on partial approximative set theory. In: Cotronis, Y., Danelutto, M., Papadopoulos, G.A. (eds.) Proceedings of PDP 2011, Ayia Napa, Cyprus, February 9-11, pp. 651–655. IEEE Computer Society Press, Los Alamitos (2011)
Csajbók, Z., Mihálydeák, T.: General tool-based approximation framework based on partial approximation of sets. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 52–59. Springer, Heidelberg (2011)
Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: A generalization of the rough set theory. International Journal of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)
Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G.: Rough sets in medical informatics applications. In: Mehnen, J., Saad, M.K.A., Tiwari, A. (eds.) Applications of Soft Computing. AISC, vol. 58, pp. 23–30. Springer, Heidelberg (2009)
Keefe, R., Smith, P.: Introduction: Theories of vagueness. In: Keefe, R., Smith, P. (eds.) Vagueness: A Reader, pp. 1–57. MIT Press, Cambridge (1996)
Ladenson, P., Kim, M.: Thyroid. In: Goldman, L., Schafer, A.I. (eds.) Goldman’s Cecil Medicine, ch. 233. Saunders Elsevier, Philadelphia (2011)
Ladenson, P.W., Singer, P.A., Ain, K.B., Bagchi, N., Bigos, S.T., Levy, E.G., Smith, S.A., Daniels, G.H., Cohen, H.D.: American thyroid association guidelines for detection of thyroid dysfunction. Arch. Intern. Med. 160(11), 1573–1575 (2000)
Orlowska, E.S.: Logic of vague concepts. Bulletin of the Section of Logic 11(3-4), 115–126 (1982)
Ozyılmaz, L., Yıldırım, T.: Diagnosis of thyroid disease using artificial neural network methods. In: Proceedings of ICONIP 2002, Singapore, pp. 2033–2036. Orchid Country Club (2002)
Pandey, B., Mishra, R.B.: Knowledge and intelligent computing system in medicine. Comp. in Bio. and Med. 39(3), 215–230 (2009)
Patel, V.L., Shortliffe, E.H., Stefanelli, M., Szolovits, P., Berthold, M.R., Bellazzi, R., Abu-Hanna, A.: The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine 46(1), 5–17 (2009)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28–40 (2007)
Seising, R.: Fuzzy sets in medicine - historical remarks. In: Valafar, F., Valafar, H. (eds.) METMBS, pp. 31–37. CSREA Press (2004)
Seising, R.: From vagueness in medical thought to the foundations of fuzzy reasoning in medical diagnosis. Artificial Intelligence in Medicine 38(3), 237–256 (2006)
Skowron, A.: Vague concepts: A rough-set approach. In: De Baets, B., De Caluwe, R., De Tré, G., Fodor, J., Kacprzyk, J., Zadrożny, S. (eds.) Proceedings of EUROFUSE 2004, pp. 480–493. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2004)
Spiegelhalter, D.J., Abrams, K.R., Myles, J.P.: Bayesian Approaches to Clinical Trials and Health-Care Evaluation (Statistics in Practice). John Wiley & Sons (January 2004)
Straszecka, E.: Combining uncertainty and imprecision in models of medical diagnosis. Inf. Sci. 176(20), 3026–3059 (2006)
Temurtas, F.: A comparative study on thyroid disease diagnosis using neural networks. Expert Syst. Appl. 36(1), 944–949 (2009)
Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.): Advances in the Dempster-Shafer theory of evidence. John Wiley & Sons, Inc., New York (1994)
Yao, Y.Y.: On generalizing rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer, Heidelberg (2003)
Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
Zakowski, W.: Approximations in the space (U,Π). Demonstratio Mathematica 16(3), 761–769 (1983)
Zhu, W.: Topological approaches to covering rough sets. Information Sciences 177(6), 1499–1508 (2007)
Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179(3), 210–225 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Csajbók, Z.E., Mihálydeák, T., Ködmön, J. (2013). An Adequate Representation of Medical Data Based on Partial Set Approximation. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds) Computer Information Systems and Industrial Management. CISIM 2013. Lecture Notes in Computer Science, vol 8104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40925-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-40925-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40924-0
Online ISBN: 978-3-642-40925-7
eBook Packages: Computer ScienceComputer Science (R0)