Witness Runs for Counter Machines

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)


In this paper, we present recent results about the verification of counter machines by using decision procedures for Presburger arithmetic. We recall several known classes of counter machines for which the reachability sets are Presburger-definable as well as temporal logics with arithmetical constraints. We discuss issues related to flat counter machines, path schema enumeration, and the use of SMT solvers.


Temporal Logic Atomic Formula Counter System Reachability Problem Counter Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH11]
    Atig, M.F., Habermehl, P.: On Yen’s path logic for Petri nets. IJFCS 22(4), 783–799 (2011)MathSciNetzbMATHGoogle Scholar
  2. [AJ96]
    Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. I & C 127(2), 91–101 (1996)MathSciNetzbMATHGoogle Scholar
  3. [BBH+06]
    Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. [BCC+03]
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 118–149 (2003)CrossRefGoogle Scholar
  5. [BCD+11]
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [BD11]
    Bersani, M.M., Demri, S.: The complexity of reversal-bounded model-checking. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 71–86. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. [BDR03]
    Bruyère, V., Dall’Olio, E., Raskin, J.-F.: Durations, parametric model-checking in timed automata with Presburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. [BEH95]
    Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of nonregular properties for nonregular processes. In: LICS 1995, pp. 123–133 (1995)Google Scholar
  9. [Ber80]
    Berman, L.: The complexity of logical theories. TCS 11, 71–78 (1980)CrossRefzbMATHGoogle Scholar
  10. [BFLS05]
    Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 474–488. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [BFM+10]
    Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., San Pietro, P.: Bounded reachability for temporal logic over constraint systems. In: TIME 2010, pp. 43–50. IEEE (2010)Google Scholar
  12. [BG06]
    Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative Presburger constraints. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. [BGI09]
    Bozga, M., Gîrlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. [BIK09]
    Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. [BIL09]
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. FI 91(2), 275–303 (2009)MathSciNetzbMATHGoogle Scholar
  16. [BJW01]
    Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 611–625. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. [BKR96]
    Biehl, M., Klarlund, N., Rauhe, T.: MONA: Decidable arithmetic in practice. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 459–462. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  18. [BL10]
    Bojańczyk, M., Lasota, S.: An extension of data automata that captures XPath. In: LICS 2010, pp. 243–252. IEEE (2010)Google Scholar
  19. [Boi99]
    Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université de Liège (1999)Google Scholar
  20. [BP12]
    Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of counter systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 88–103. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. [BS11]
    Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. [BSST08]
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 26, pp. 825–885. IOS Press (2008)Google Scholar
  23. [BST12]
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0 (September 2012),
  24. [BW94]
    Boigelot, B., Wolper, P.: Verification with Periodic Sets. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  25. [BW98]
    Boigelot, B., Wolper, P.: Verifying systems with infinite but regular state spaces. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. [CC00]
    Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. [CGP00]
    Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press (2000)Google Scholar
  28. [CJ98]
    Comon, H., Jurski, Y.: Multiple counter automata, safety analysis and Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. [CKL13]
    Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL* with constraints. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 455–469. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. [Con12]
    Conchon, S.: SMT Techniques and their Applications: from Alt-Ergo to Cubicle. Habilitation à Diriger des Recherches, Université Paris-Sud (2012)Google Scholar
  31. [Coo72]
    Cooper, D.: Theorem proving in arithmetic without multiplication. Machine Learning 7, 91–99 (1972)zbMATHGoogle Scholar
  32. [DD07]
    Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. I & C 205(3), 380–415 (2007)MathSciNetzbMATHGoogle Scholar
  33. [DDS12]
    Demri, S., Dhar, A.K., Sangnier, A.: Taming Past LTL and Flat Counter Systems. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 179–193. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. [DDS13]
    Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular properties on flat counter systems, In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 162–173. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. [DFGvD10]
    Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking \(\textsf{CTL}^{*}\) over flat Presburger counter systems. JANCL 20(4), 313–344 (2010)zbMATHGoogle Scholar
  36. [DG08]
    Demri, S., Gascon, R.: Verification of qualitative Z constraints. TCS 409(1), 24–40 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [DG09]
    Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. JLC 19(6), 1541–1575 (2009)MathSciNetzbMATHGoogle Scholar
  38. [DLN07]
    Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability and complexity. I & C 205(1), 2–24 (2007)zbMATHGoogle Scholar
  39. [DLS10]
    Demri, S., Lazić, R., Sangnier, A.: Model checking memoryful linear-time logics over one-counter automata. TCS 411(22-24), 2298–2316 (2010)CrossRefzbMATHGoogle Scholar
  40. [dMB08]
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  41. [Esp94]
    Esparza, J.: On the decidability of model checking for several μ-calculi and Petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  42. [Fit02]
    Fitting, M.: Modal logic between propositional and first-order. JLC 12(6), 1017–1026 (2002)MathSciNetzbMATHGoogle Scholar
  43. [FL02]
    Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  44. [FO97]
    Fribourg, L., Olsén, H.: Proving safety properties of infinite state systems by compilation into Presburger arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  45. [FR74]
    Fischer, M., Rabin, M.: Super-exponential complexity of Presburger arithmetic. In: Complexity of Computation. SIAM-AMS proceedings, vol. 7, pp. 27–42. AMS (1974)Google Scholar
  46. [FR79]
    Ferrante, J., Rackoff, C.: The Computational Complexity of Logical Theories. Lecture Notes in Mathematics, vol. 718. Springer (1979)Google Scholar
  47. [Fri00]
    Fribourg, L.: Petri nets, flat languages and linear arithmetic. In: 9th Workshop on Functional and Logic Programming (WFLP), pp. 344–365 (2000)Google Scholar
  48. [FS01]
    Finkel, A., Schnoebelen, P.: Well-structured transitions systems everywhere! TCS 256(1-2), 63–92 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  49. [FS08]
    Finkel, A., Sangnier, A.: Reversal-bounded counter machines revisited. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 323–334. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  50. [FS09]
    Figueira, D., Segoufin, L.: Future-looking logics on data words and trees. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 331–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  51. [GI81]
    Gurari, E., Ibarra, O.: The complexity of decision problems for finite-turn multicounter machines. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 495–505. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  52. [GNRZ07]
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satisfiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  53. [Gor94]
    Goranko, V.: Temporal logic with reference pointers. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS (LNAI), vol. 827, pp. 133–148. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  54. [Grä88]
    Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy. TCS 56, 289–301 (1988)CrossRefzbMATHGoogle Scholar
  55. [GS92]
    German, S., Sistla, P.: Reasoning about systems with many processes. JACM 39(3), 675–735 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  56. [Hab97]
    Habermehl, P.: On the complexity of the linear-time mu-calculus for Petri nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  57. [Hen90]
    Henzinger, T.: Half-order modal logic: how to prove real-time properties. In: PODC 1990, pp. 281–296. ACM Press (1990)Google Scholar
  58. [HL11]
    Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  59. [HP79]
    Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. TCS 8, 135–159 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  60. [HR87]
    Howell, R.R., Rosier, L.E.: An analysis of the nonemptiness problem for classes of reversal-bounded multicounter machines. JCSS 34(1), 55–74 (1987)MathSciNetzbMATHGoogle Scholar
  61. [HR89]
    Howell, R.R., Rosier, L.E.: Problems concerning fairness and temporal logic for conflict-free petri nets. TCS 64, 305–329 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  62. [HRS76]
    Hunt, H., Rosenkrantz, D., Szymanski, T.: On the equivalence, containment, and covering problems for the regular and context-free languages. JCSS 12, 222–268 (1976)MathSciNetzbMATHGoogle Scholar
  63. [Iba78]
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. JACM 25(1), 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  64. [Jan90]
    Jančar, P.: Decidability of a temporal logic problem for Petri nets. TCS 74(1), 71–93 (1990)CrossRefzbMATHGoogle Scholar
  65. [KM69]
    Karp, R.M., Miller, R.E.: Parallel program schemata. JCSS 3(2), 147–195 (1969)MathSciNetzbMATHGoogle Scholar
  66. [Kos82]
    Kosaraju, R.: Decidability of reachability in vector addition systems. In: STOC 1982, pp. 267–281 (1982)Google Scholar
  67. [Ler03]
    Leroux, J.: Algorithmique de la vérification des systèmes à compteurs. Approximation et accélération. Implémentation de l’outil FAST. PhD thesis, ENS de Cachan, France (2003)Google Scholar
  68. [Ler09]
    Leroux, J.: The general vector addition system reachability problem by Presburger inductive invariants. In: LICS 2009, pp. 4–13. IEEE (2009)Google Scholar
  69. [Ler12]
    Leroux, J.: Presburger counter machines. Habilitation à Diriger des Recherches, Université Bordeaux (2012)Google Scholar
  70. [Ler13]
    Leroux, J.: Presburger Vector Addition Systems. In: LICS 2013, pp. 23–32. IEEE (2013)Google Scholar
  71. [Lip76]
    Lipton, R.J.: The reachability problem requires exponential space. Technical Report 62, Department of Computer Science, Yale University (1976)Google Scholar
  72. [LP05]
    Lisitsa, A., Potapov, I.: Temporal logic with predicate λ-abstraction. In: TIME 2005, pp. 147–155. IEEE (2005)Google Scholar
  73. [LP09]
    Leroux, J., Point, G.: TaPAS: The Talence Presburger Arithmetic Suite. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 182–185. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  74. [LS05]
    Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  75. [Lut04]
    Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM ToCL 5(4), 669–705 (2004)MathSciNetCrossRefGoogle Scholar
  76. [May84]
    Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM Journal of Computing 13(3), 441–460 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  77. [May03]
    Mayr, R.: Undecidable problems in unreliable computations. TCS 297(1-3), 337–354 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  78. [Min61]
    Minsky, M.: Recursive unsolvability of Post’s problems of ‘tag’ and other topics in theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  79. [Min67]
    Minsky, M.: Computation, Finite and Infinite Machines. Prentice Hall (1967)Google Scholar
  80. [Mon10]
    Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  81. [MP92]
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer (1992)Google Scholar
  82. [MP95]
    Manna, Z., Pnueli, A.: Temporal verification of reative systems: safety. Springer (1995)Google Scholar
  83. [MS77]
    Mandel, A., Simon, I.: On finite semigroups of matrices. TCS 5(2), 101–111 (1977)MathSciNetCrossRefGoogle Scholar
  84. [Opp78]
    Oppen, D.: A \(2^{2^{2pn}}\) upper bound on the complexity of Presburger arithmetic. JCSS 16(3), 323–332 (1978)MathSciNetzbMATHGoogle Scholar
  85. [OW05]
    Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic. In: LICS 2005, pp. 188–197. IEEE (2005)Google Scholar
  86. [Pnu77]
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)Google Scholar
  87. [Pre29]
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du Premier Congrès de Mathématiciens des Pays Slaves, Warszawa, pp. 92–101 (1929)Google Scholar
  88. [Pug92]
    Pugh, W.: A practical algorithm for exact array dependence analysis. Communications of the ACM 35(8), 102–114 (1992)CrossRefGoogle Scholar
  89. [QR05]
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  90. [Reu90]
    Reutenauer, C.: The mathematics of Petri nets. Masson and Prentice (1990)Google Scholar
  91. [RL78]
    Reddy, C., Loveland, W.: Presburger arithmetic with bounded quantifier alternation. In: STOC 1978, pp. 320–325. ACM Press (1978)Google Scholar
  92. [Sch02]
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. IPL 83, 251–261 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  93. [Sch10]
    Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  94. [Sho79]
    Shostak, R.: A practical decision procedure for arithmetic with function symbols. JACM 26(2), 351–360 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  95. [SJ80]
    Suzuki, N., Jefferson, D.: Verification Decidability of Presburger Array Programs. JACM 27(1), 191–205 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  96. [ST11]
    Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data domains. In: STACS 2011, pp. 81–92 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.New York UniversityUSA
  2. 2.LSV, CNRSFrance

Personalised recommendations