Advertisement

From Resolution and DPLL to Solving Arithmetic Constraints

Conference paper
  • 430 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)

Abstract

Reasoning methods based on resolution and DPLL have enjoyed many success stories in real-life applications. One of the challenges is whether we can go beyond and extend this technology to other domains such as arithmetic. In our recent work we introduced two methods for solving systems of linear inequalities called conflict resolution (CR) [6,7] and bound propagation (BP) [3,8] which aim to address this challenge. In particular, conflict resolution can be seen as a refinement of resolution and bound propagation is analogous to DPLL with constraint propagation, backjumping and lemma learning. There are non-trivial issues when considering arithmetic constraints such as termination, dynamic variable ordering and dealing with large coefficients. In this talk I will overview our approach and some related work [1,2,4,5,9]. This is a joint work with Ioan Dragan, Laura Kovács, Nestan Tsiskaridze and Andrei Voronkov.

References

  1. 1.
    Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout, A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Cotton, S.: Natural Domain SMT: A Preliminary Assessment. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Dragan, I., Korovin, K., Kovács, L., Voronkov A.: Bound propagation for arithmetic reasoning in Vampire (submitted, 2013)Google Scholar
  4. 4.
    Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 338–353. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Implementing conflict resolution. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 362–376. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Korovin, K., Voronkov, A.: Solving Systems of Linear Inequalities by Bound Propagation. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 369–383. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Logics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer ScienceThe University of ManchesterUK

Personalised recommendations