Abstract
Automated theorem provers for first-order logic with equality have become very powerful and useful, thanks to both advanced calculi — such as superposition and its refinements — and mature implementation techniques. Nevertheless, dealing with some axiomatic theories remains a challenge because it gives rise to a search space explosion. Most attempts to deal with this problem have focused on specific theories, like AC (associative commutative symbols) or ACU (AC with neutral element). Even detecting the presence of a theory in a problem is generally solved in an ad-hoc fashion. We present here a generic way of describing and recognizing axiomatic theories in clausal form first-order logic with equality. Subsequently, we show some use cases for it, including a redundancy criterion that can be applied to some equational theories, extending some work that has been done by Avenhaus, Hillenbrand and Löchner.
Keywords
- Theorem Prover
- Equational Theory
- Predicate Symbol
- Horn Clause
- Axiomatic Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in equational theorem proving. Journal of Symbolic Computation 36(1-2), 217–233 (2003)
Bachmair, L., Ganzinger, H.: Associative-commutative superposition. In: Dershowitz, N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 1–14. Springer, Heidelberg (1995)
Denzinger, J., Schulz, S.: Learning domain knowledge to improve theorem proving. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 62–76. Springer, Heidelberg (1996)
Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 335–349. Springer, Heidelberg (2003)
Hillenbrand, T., Jaeger, A., Löchner, B.: System description: Waldmeister – improvements in performance and ease of use. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 232–236. Springer, Heidelberg (1999)
Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier, MIT Press (1999)
Riazanov, A., Voronkov, A.: Vampire 1.1 (System description). In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 376–380. Springer, Heidelberg (2001)
Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1), 23–41 (1965)
Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2,3), 111–126 (2002)
Stuber, J.: Superposition theorem proving for abelian groups represented as integer modules. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 33–47. Springer, Heidelberg (1996)
Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)
Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burel, G., Cruanes, S. (2013). Detection of First Order Axiomatic Theories. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds) Frontiers of Combining Systems. FroCoS 2013. Lecture Notes in Computer Science(), vol 8152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40885-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-40885-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40884-7
Online ISBN: 978-3-642-40885-4
eBook Packages: Computer ScienceComputer Science (R0)