Detection of First Order Axiomatic Theories

  • Guillaume Burel
  • Simon Cruanes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8152)

Abstract

Automated theorem provers for first-order logic with equality have become very powerful and useful, thanks to both advanced calculi — such as superposition and its refinements — and mature implementation techniques. Nevertheless, dealing with some axiomatic theories remains a challenge because it gives rise to a search space explosion. Most attempts to deal with this problem have focused on specific theories, like AC (associative commutative symbols) or ACU (AC with neutral element). Even detecting the presence of a theory in a problem is generally solved in an ad-hoc fashion. We present here a generic way of describing and recognizing axiomatic theories in clausal form first-order logic with equality. Subsequently, we show some use cases for it, including a redundancy criterion that can be applied to some equational theories, extending some work that has been done by Avenhaus, Hillenbrand and Löchner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in equational theorem proving. Journal of Symbolic Computation 36(1-2), 217–233 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Associative-commutative superposition. In: Dershowitz, N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 1–14. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Denzinger, J., Schulz, S.: Learning domain knowledge to improve theorem proving. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 62–76. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 335–349. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Hillenbrand, T., Jaeger, A., Löchner, B.: System description: Waldmeister – improvements in performance and ease of use. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 232–236. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier, MIT Press (1999)Google Scholar
  9. 9.
    Riazanov, A., Voronkov, A.: Vampire 1.1 (System description). In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 376–380. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1), 23–41 (1965)CrossRefMATHGoogle Scholar
  11. 11.
    Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2,3), 111–126 (2002)MATHGoogle Scholar
  12. 12.
    Stuber, J.: Superposition theorem proving for abelian groups represented as integer modules. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 33–47. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Burel
    • 1
  • Simon Cruanes
    • 2
  1. 1.ÉNSIIE/CédricÉvry cedexFrance
  2. 2.École polytechnique and INRIAParisFrance

Personalised recommendations