On the Convergence of Boolean Automata Networks without Negative Cycles

  • Tarek Melliti
  • Damien Regnault
  • Adrien Richard
  • Sylvain Sené
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8155)


Since the 1980’s, automata networks have been at the centre of numerous studies, from both theoretical (around the computational abilities) and applied (around the modelling power of real phenomena) standpoints. In this paper, basing ourselves on the seminal works of Robert and Thomas, we focus on a specific family of Boolean automata networks, those without negative cycles. For these networks, subjected to both asynchronous and elementary updating modes, we give new answers to well known problems (some of them having already been solved) about their convergence towards stable configurations. For the already solved ones, the proofs given are much simpler and neater than the existing ones. For the others, in any case, the proofs presented are constructive.


Boolean automata networks cycles monotony convergence and convergence time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bulletin of Mathematical Biology 70, 1398–1409 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aracena, J., Demongeot, J., Goles, E.: Positive and negative circuits in discrete neural networks. IEEE Transactions on Neural Networks 15, 77–83 (2004)CrossRefGoogle Scholar
  3. 3.
    Elspas, B.: The theory of autonomous linear sequential networks. IRE Transactions on Circuit Theory 6, 45–60 (1959)CrossRefGoogle Scholar
  4. 4.
    Goles, E.: Fixed point behavior of threshold functions on a finite set. SIAM Journal on Algebraic and Discrete Methods 3, 529–531 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goles, E., Martínez, S.: Neural and automata networks: dynamical behaviour and applications. Kluwer Academic Publishers (1990)Google Scholar
  6. 6.
    Goles, E., Salinas, L.: Sequential operator for filtering cycles in Boolean networks. Advances in Applied Mathematics 45, 346–358 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golomb, S.W.: Shift register sequences. Holden-Day (1967)Google Scholar
  8. 8.
    Harary, F.: On the notion of balance of a signed graph. Michigan Mathematical Journal 2, 143–146 (1953)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hirsch, M.W., Smith, H.: Monotone maps: a review. Journal of Difference Equations and Applications 11, 379–398 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kauffman, S.A.: Origins of order: self-organization and selection in evolution. Oxford University Press (1993)Google Scholar
  13. 13.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata studies, Annals of Mathematics Studies, vol. 34, pp. 3–41. Princeton Universtity Press (1956)Google Scholar
  14. 14.
    McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    von Neumann, J.: Theory of self-reproducing automata. University of Illinois Press (1966)Google Scholar
  16. 16.
    Noual, M.: Synchronism vs. asynchronism in Boolean automata networks. Tech. rep., Laboratoire I3S, UMR UNS CNRS (2012), arXiv:1104.4039Google Scholar
  17. 17.
    Noual, M.: Updating automata networks. Ph.D. thesis, École normale supérieure de Lyon (2012), tel-00726560Google Scholar
  18. 18.
    Remy, É., Ruet, P., Thieffry, D.: Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Advances in Applied Mathematics 41, 335–350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Advances in Applied Mathematics 44, 378–392 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Richard, A., Comet, J.P.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics 155, 2403–2413 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Robert, F.: Discrete iterations: a metric study. Springer (1986)Google Scholar
  22. 22.
    Rouquier, J.B., Regnault, D., Thierry, É.: Stochastic minority on graphs. Theoretical Computer Science 412, 3947–3963 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Saint Savage, N.: The effects of state dependent and state independent probabilistic updating on Boolean network dynamics. Ph.D. thesis, University of Manchester (2005)Google Scholar
  24. 24.
    Smith, A.R.: Simple computation-universal cellular spaces. Journal of the ACM 18, 339–353 (1971)CrossRefzbMATHGoogle Scholar
  25. 25.
    Smith, H.L.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical surveys and monographs, vol. 41. American Mathematical Society (1995)Google Scholar
  26. 26.
    Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42, 563–585 (1973)CrossRefGoogle Scholar
  27. 27.
    Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical Methods in the Study of Critical Phenomena. Springer Series in Synergetics, vol. 9, pp. 180–193. Springer (1981)Google Scholar
  28. 28.
    Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. Journal of Theoretical Biology 153, 1–23 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tarek Melliti
    • 1
  • Damien Regnault
    • 1
  • Adrien Richard
    • 2
  • Sylvain Sené
    • 1
    • 3
  1. 1.Laboratoire IBISC, EA4526Université d’Évry Val-d’EssonneÉvryFrance
  2. 2.Laboratoire I3SUMR7271 CNRS et Université de Nice Sophia AntipolisSophia AntipolisFrance
  3. 3.IXXIInstitut rhône-alpin des systèmes complexesLyonFrance

Personalised recommendations