Skip to main content

A Robustness Approach to Study Metastable Behaviours in a Lattice-Gas Model of Swarming

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8155)

Abstract

Research in biology is increasingly interested in discrete dynamical systems to simulate natural phenomena with simple models. But how to take into account their robustness? We illustrate this issue by considering the behaviour of a lattice-gas model with an alignment-favouring interaction rule. This model, which has been shown to display a phase transition between an ordered and a disordered phase, follows ergodic dynamics. We present a method based on the study of stability and robustness, and show that the organised phase may result in several different behaviours. We then observe that behaviours are influenced asymptotically by the definition of the cellular lattice.

Keywords

  • Swarming behaviour
  • lattice-gas cellular automata
  • phase transitions
  • robustness
  • discretisation effects
  • resonance effects

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. Journal of Theoretical Biology 160(1), 97–133 (1993)

    CrossRef  Google Scholar 

  2. Chevrier, V., Fatès, N.: How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 533–540 (2010)

    Google Scholar 

  3. Slotine, J., Li, W., et al.: Applied nonlinear control, vol. 66. Prentice hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  4. Grilo, C., Correia, L.: Effects of asynchronism on evolutionary games. Journal of Theoretical Biology 269(1), 109–122 (2011)

    CrossRef  MathSciNet  Google Scholar 

  5. Bouré, O., Fatès, N., Chevrier, V.: Probing robustness of cellular automata through variations of asynchronous updating. Natural Computing 11(4), 553–564 (2012)

    CrossRef  MathSciNet  Google Scholar 

  6. Vicsek, T., Zafeiris, A.: Collective motion. Physics Reports 517(3-4), 71–140 (2012)

    CrossRef  Google Scholar 

  7. Deutsch, A., Theraulaz, G., Vicsek, T.: Collective motion in biological systems. Interface Focus 2, 689–692 (2012)

    CrossRef  Google Scholar 

  8. Peruani, F., Ginelli, F., Bär, M., Chaté, H.: Polar vs. apolar alignment in systems of polar self-propelled particles. Journal of Physics: Conference Series 297(1), 012014 (2011)

    Google Scholar 

  9. Deutsch, A.: Orientation-induced pattern formation: Swarm dynamics in a lattice-gas automaton model. International Journal of Bifurcation and Chaos 6(9), 1735–1752 (1996)

    CrossRef  MATH  Google Scholar 

  10. Whitelam, S., Feng, E.H., Hagan, M.F., Geissler, P.L.: The role of collective motion in examples of coarsening and self-assembly. Soft Matter 5, 1251–1262 (2009)

    CrossRef  Google Scholar 

  11. Chopard, B., Ouared, R., Deutsch, A., Hatzikirou, H., Wolf-Gladrow, D.: Lattice-gas cellular automaton models for biology: From fluids to cells. Acta Biotheoretica 58, 329–340 (2010)

    CrossRef  Google Scholar 

  12. Hatzikirou, H., Brusch, L., Schaller, C., Simon, M., Deutsch, A.: Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Computers Mathematics with Applications 59(7), 2326–2339 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Helbing, D., Isobe, M., Nagatani, T., Takimoto, K.: Lattice gas simulation of experimentally studied evacuation dynamics. Physical Review E 67, 067101 (2003)

    CrossRef  Google Scholar 

  14. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics Forum 26(3), 655–664 (2007)

    CrossRef  Google Scholar 

  15. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics 5, 4104–4108 (1997)

    Google Scholar 

  16. Leung, H., Kothari, R., Minai, A.A.: Phase transition in a swarm algorithm for self-organized construction. Physical Review E 68(4), 046111 (2003)

    CrossRef  Google Scholar 

  17. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Sochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75, 1226 (1995)

    CrossRef  Google Scholar 

  18. Deutsch, A.: Orientation-induced pattern formation: swarm dynamics in a lattice-gas automaton model. International Journal of Bifurcation and Chaos 6, 1735–1752 (1996)

    CrossRef  MATH  Google Scholar 

  19. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhauser Boston (2005)

    Google Scholar 

  20. Csahók, Z., Vicsek, T.: Lattice-gas model for collective biological motion. Physical Review E 52, 5297–5303 (1998)

    CrossRef  Google Scholar 

  21. Bussemaker, H.J., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Physical Review Letters 78(26), 5018–5021 (1997)

    CrossRef  MATH  Google Scholar 

  22. Peruani, F., Klauss, T., Deutsch, A., Voss-Boehme, A.: Traffic jams, gliders, and bands in the quest for collective motion of self-propelled particles. Physical Review Letters 106, 128101 (2011)

    CrossRef  Google Scholar 

  23. Manzo, F., Olivieri, E., Nardi, F., Scoppola, E.: On the essential features of metastability: Tunnelling time and critical configurations. Journal of Statistical Physics 115, 591–642 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Cirillo, E., Nardi, F., Spitoni, C.: Metastability for reversible probabilistic cellular automata with self-interaction. Journal of Statistical Physics 132, 431–471 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Bouré, O., Fatès, N., Chevrier, V.: A robustness approach to study metastable behaviours in a lattice-gas model of swarming, Tech. rep., LORIA – Inria Nancy Grand-Est – Université de Lorraine (2013)

    Google Scholar 

  26. Bouré, O., Fatès, N., Chevrier, V.: First steps on asynchronous lattice-gas models with an application to a swarming rule. Natural Computing (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouré, O., Fatès, N., Chevrier, V. (2013). A Robustness Approach to Study Metastable Behaviours in a Lattice-Gas Model of Swarming. In: Kari, J., Kutrib, M., Malcher, A. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2013. Lecture Notes in Computer Science, vol 8155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40867-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40867-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40866-3

  • Online ISBN: 978-3-642-40867-0

  • eBook Packages: Computer ScienceComputer Science (R0)