Advertisement

A Holistic Cloud-Enabled Robotics System for Real-Time Video Tracking Application

  • Bingwei Liu
  • Yu Chen
  • Erik Blasch
  • Khanh Pham
  • Dan Shen
  • Genshe Chen
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 276)

Abstract

Future distributed sensor fusion applications will require efficient methods of information management such as Cloud computing. Using a server-based cloud-enabled software architecture would increase performance over hardware constraints (e.g., power, memory, and processors). In this paper, we propose a comprehensive framework for information fusion demonstrated for Cloud Robotics, which possesses user favorable features such as good scalability and elasticity. Robots are connected together to form a networked robotic system that is able to accomplish more computationally intensive tasks. Supported by the emerging Cloud computing technology, cloud-enabled robotic systems (CERS) provide even more powerful capabilities to users, yet keeping the simplicity of a set of distributed robots. Through an experimental study, we evaluate the memory, speed, and processors needed for a video tracking application.

Keywords

Cloud computing image tracking robot networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blasch, E., Bosse, E., Lambert, D.A.: High-Level Information Fusion Management and Systems Design. Artech House Publishers (2012)Google Scholar
  2. 2.
    Blasch, E., Chen, Y., Chen, G., Shen, D., Kohler, R.: Information Fusion in a Cloud-Enabled Environment. In: Choi, B.-Y., Han, K., Song, S. (eds.), Springer Publishing (2013)Google Scholar
  3. 3.
    Blasch, E., Kadar, I., Salerno, J., Kokar, M.M., Das, S., Powell, G.M., Corkill, D.D., Ruspini, E.H.: Issues and challenges in situation assessment (level 2 fusion). J. of Advances in Information Fusion 1(2), 122–139 (2006)Google Scholar
  4. 4.
    Blasch, E., Seetharaman, G., Pal, K., Ling, H., Chen, G.: Wide- area motion imagery (wami) exploitation tools for enhanced situation awareness. In: IEEE Applied Imagery Pattern Recognition Workshop. IEEE (2012)Google Scholar
  5. 5.
    Mazur, S., Blasch, E., Chen, Y., Skormin, V.: Mitigating cloud computing security risks using a self-monitoring defensive scheme. In: Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), pp. 39–45. IEEE (2011)Google Scholar
  6. 6.
    Lee, K.-M., Zhou, Z., Blenis, R., Blasch, E.: Real-time vision-based tracking control of an unmanned vehicle. Mechatronics 5(8), 973–991 (1995)CrossRefGoogle Scholar
  7. 7.
    Shen, D., Blasch, E., Pham, K., Chen, G.: A clustering game based framework for image segmentation. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 818–823. IEEE (2012)Google Scholar
  8. 8.
    Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Efficient minimum error bounded particle resampling l1 tracker with occlusion detection. IEEE Trans. on Image Processing (T-IP) (2013)Google Scholar
  9. 9.
    Wu, Y., Cheng, J., Wang, J., Lu, H., Wang, J., Ling, H., Blasch, E., Bai, L.: Real-time probabilistic covariance tracking with efficient model update. IEEE Transactions on Image Processing 21(5), 2824–2837 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    IEEE society of robotics and automation’s technical committee on networked robots, http://www-users.cs.umn.edu/isler/tc/
  11. 11.
    Kuffner, J.J.: Cloud-enabled robots. In: IEEE-RAS International Conference on Humanoid Robotics, Nashville, TN (2010)Google Scholar
  12. 12.
    Chen, Y., Du, Z., García-Acosta, M.: Robot as a service in cloud computing. In: 2010 Fifth IEEE International Symposium on Service Oriented System Engineering (SOSE), pp. 151–158. IEEE (2010)Google Scholar
  13. 13.
    Agostinho, L., Olivi, L., Feliciano, G., Paolieri, F., Rodrigues, D., Cardozo, E., Guimaraes, E.: A cloud computing environment for supporting networked robotics applications. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (DASC), pp. 1110–1116. IEEE (2011)Google Scholar
  14. 14.
    Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot grasping with the google object recognition engine. In: IEEE International Conference on Robotics and Automation. IEEE (2013)Google Scholar
  15. 15.
    Arumugam, R., Enti, V., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Kumar, A., Meng, K.D., Kit, G.W.: Davinci: A cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3084–3089 (May 2010)Google Scholar
  16. 16.
    Goldberg, K., Kehoe, B.: Cloud robotics and automation: A survey of related work. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2013-5 (2013)Google Scholar
  17. 17.
    Hu, G., Tay, W., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Network 26(3), 21–28 (2012)CrossRefGoogle Scholar
  18. 18.
    Robot operating system, http://www.ros.org
  19. 19.
  20. 20.
    Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Transactions on Internet Technology (TOIT) 2(2), 115–150 (2002)CrossRefGoogle Scholar
  21. 21.
    Ling, H., Bai, L., Blasch, E., Mei, X.: Robust infrared vehicle tracking across target pose change using l1 regularization. In: Int. Conf. on Info Fusion, vol. 1 (2010)Google Scholar
  22. 22.
    Xen cloud platform, http://xen.org
  23. 23.
  24. 24.
    Mell, P., Grance, T.: The nist definition of cloud computing (draft). NIST special publication, vol. 800, p. 145 (2011)Google Scholar
  25. 25.
    Wang, L., Liu, M., Meng, M., Siegwart, R.: Towards real-time multi- sensor information retrieval in cloud robotic system. In: 2012 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 21–26. IEEE (2012)Google Scholar
  26. 26.
    Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient l1 tracker with occlusion detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1257–1264 (June 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bingwei Liu
    • 1
  • Yu Chen
    • 1
  • Erik Blasch
    • 2
  • Khanh Pham
    • 3
  • Dan Shen
    • 4
  • Genshe Chen
    • 4
  1. 1.Department of Electrical and Computer EngineeringBinghamton University, SUNYBinghamtonUSA
  2. 2.Air Force Research LaboratoryRomeUSA
  3. 3.Air Force Research LaboratoryKirtland AFBAlbuquerqueUSA
  4. 4.Intelligent Fusion Technology, Inc.GermantownUSA

Personalised recommendations