A Framework for Selecting the Optimal Technique Suitable for Application in a Data Mining Task

  • Haruna Chiroma
  • Sameem Abdul-Kareem
  • Adamau Abubakar
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 276)

Abstract

This paper presents a conceptual framework for selection of data mining technique based on the 8 selection criteria’s: optimization capability, computation complexity, flexibility, interpretability, scalability, ease of problem encoding, autonomy, and accessibility. The framework is suitable for choosing appropriate technique for application in a particular task of data mining. The paper has set the stage for further research work.

Keywords

Data mining task Neural networks Evolutionary algorithms Data visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sung, S.Y., Wang, K., Chua, B.L.: Data mining in a large database environment. National University of Singapore, IEEE (1996)Google Scholar
  2. 2.
    Shahbaz, M., Athar, S.M., Shaheen, M., Khan, A.: Data mining methodology in perspective of manufacturing databases. J. Am. Sci. (2010)Google Scholar
  3. 3.
    Aggarwal, N., Kumar, A., Khatter, H., Aggarwal, V.: Analysis the effect of data mining techniques on database. Advances in Eng. Software 47, 164–169 (2012)CrossRefGoogle Scholar
  4. 4.
    Bose, I., Mahapatra, R.K.: Business data mining – a machine learning perspective. Inf. Management 39(3), 211–225 (2001)CrossRefGoogle Scholar
  5. 5.
    Abbasi, Z.K., Soleimanian, F.G.: Comparison and evaluation of data mining techniques with algorithmic models in software cost estimation. Procedia Technol. 1, 65–71 (2012)CrossRefGoogle Scholar
  6. 6.
    Zengin, K., Esgi, N., Erginer, E., Emin, M.A.: A sample study on applying data mining research techniques in educational science: developing a more meaning of data. Procedia Social and Behavioral Sci. 15, 4028–4032 (2011)CrossRefGoogle Scholar
  7. 7.
    Wang, Y.H., Tseng, M.H., Liao, H.C.: Data mining for adaptive learning sequence in English language instruction. Expert. Syst. Appl. 36, 7681–7686 (2009)CrossRefGoogle Scholar
  8. 8.
    Carrier, C.G., Povel, O.: Characterising data mining software. Intelligent Data Analysis 7, 181–192 (2003)Google Scholar
  9. 9.
    Liao, S., Chu, P., Hsiao, P.: Data mining techniques and applications – A decade review from 2000 to 2011. Expert Syst. Appl. 39, 11303–11311 (2012)CrossRefGoogle Scholar
  10. 10.
    Turban, E., Aronson, J.E., Liang, T.P., Sharda, R.: Decision support and business intelligence systems, p. 305. Pearson Education (2007)Google Scholar
  11. 11.
    Rygielski, C., Wang, J., Yen, D.C.: Data mining techniques for customer relationship management. Technol. Society 24, 483–502 (2002)CrossRefGoogle Scholar
  12. 12.
    Wang, S.: Application of self-organising maps for data mining with incomplete data sets. Neural Comput. Appl. 12, 42–48 (2003)CrossRefGoogle Scholar
  13. 13.
    Pahariya, J.S., Ravi, V., Carr, M., Vasu, M.: Computational Intelligence Hybrids Applied to Software Cost Estimation. Int. J. Comput. Inf. Syst. Industrial Management Appl. (IJCISIM) 2, 104–112 (2010)Google Scholar
  14. 14.
    Chen, S.C., Huang, M.Y.: Constructing credit auditing and control & management model with data mining technique. Expert Syst. Appl. 38, 5359–5365 (2011)CrossRefGoogle Scholar
  15. 15.
    Aliev, R.A., Aliev, R.R., Guirimov, B., Uyar, K.: Dynamic data mining technique for rules extraction in a process of battery charging. Appl. Soft Comput. J. 8(3), 1252–1258 (2008)CrossRefGoogle Scholar
  16. 16.
    Mantzaris, D., Anastassopoulos, G., Adamopoulosc, A.: Genetic algorithm pruning of probabilistic neural networks in medical disease estimation. Neural Networks 24, 831–835 (2011)CrossRefGoogle Scholar
  17. 17.
    Dehuri, S., Cho, S.: A hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasets. Neural Comput. Appl. 19, 317–328 (2010)CrossRefGoogle Scholar
  18. 18.
    Mitra, P., Mitra, S., Pal, S.K.: Evolutionary Modular MLP with Rough Sets and ID3 Algorithm for Staging of Cervical Cancer. Neural Comput. Applic. 10, 67–76 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Rivas, T., Paz, M., Martín, J.M., Matías, J.F., García, J.F., Taboada, J.: Explaining and predicting workplace accidents using data-mining techniques. Reliability Eng. Syst. Safety 96(7), 739–747 (2011)CrossRefGoogle Scholar
  20. 20.
    Cravener, T.L., Roush, W.B.: Prediction of amino acid profiles in feed ingredients: genetic algorithms calibration of artificial neural networks. Ann. Feed Sci. Tech. 90, 131–141 (2001)CrossRefGoogle Scholar
  21. 21.
    Ding, S., Zhang, Y., Chen, J., Jia, W.: Research on using genetic algorithms to optimize Elman neural networks. Neural Comput. Appl. (2012), doi:10.1007/s00521-012-0896-3Google Scholar
  22. 22.
    Ma, P.C.H., Chan, K.C.C.: An effective data mining technique for reconstructing gene regulatory networks from time series expression data. J. Bioinf. Comput. Bio. 5(3), 651–668 (2007)CrossRefGoogle Scholar
  23. 23.
    Oh, S., Pedrycz, W.: Multi-layer self-organizing polynomial neural networks and their development with the use of genetic algorithms. J. Franklin Institute 343, 125–136 (2006)MATHCrossRefGoogle Scholar
  24. 24.
    Kim, H.-J., Shin, K.-S., Park, K.: Time Delay Neural Networks and Genetic Algorithms for Detecting Temporal Patterns in Stock Markets. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 1247–1255. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Welch, J., Reeves, T.E., Welch, S.T.: Using a genetic algorithm-based classifier system for modeling auditor decision behavior in a fraud setting. Int. J. Intell. Syst. Accounting, Finance & Management 7(3), 173–186 (1998)CrossRefGoogle Scholar
  26. 26.
    Kaboudan, M.A.: Compumetric forecasting of crude oil prices. In: Proc. IEEE Congress Evolutionary Comput., pp. 283–287 (2001)Google Scholar
  27. 27.
    Assareh, E., Behrang, M.A., Assari, M.R., Ghanbarzadeh, A.: Application of particle swarm optimization and genetic algorithms techniques on demand estimation of oil in Iran. Energy 35, 5223–5229 (2010)CrossRefGoogle Scholar
  28. 28.
    Andreou, A.S., Papatheocharous, E.: Software Cost Estimation using Fuzzy Decision Trees. In: 23rd IEEE/ACM International Conference on Automated Software Engineering, pp. 371–374 (2008)Google Scholar
  29. 29.
    Hwan, J.S., Hoon, C.P., Hyun, S.J.: Applying text and data mining techniques to forecasting the trend of petitions filed to e-People. Expert Syst. App. 37, 7255–7268 (2010)CrossRefGoogle Scholar
  30. 30.
    Leung, R.W., Lau, H.C.W., Kwong, C.K.: On a responsive replenishment system: A fuzzy logic approach. Expert Syst. Appl. 20, 20–32 (2003)CrossRefGoogle Scholar
  31. 31.
    Deshmukh, A., Romine, J., Siegel, P.H.: Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach. Managerial Finance 23(6), 35–48 (1997)CrossRefGoogle Scholar
  32. 32.
    Vranes, S., Stanojevic, M., Stevanovic, V., Lucin, M.: INVEX: investment advisory expert system. Expert Syst. Appl. 13(2), 105–119 (1996)CrossRefGoogle Scholar
  33. 33.
    Ugŭr, E.K., Selbas, R., Sencan, A.: Data mining techniques for thermophysical properties of refrigerants. Energy Conversion and Management 50, 399–412 (2009)Google Scholar
  34. 34.
    Zhang, D., Zhou, L.: Discovering Golden Nuggets: Data Mining in Financial Application. IEEE Trans. Syst. Man Cybernetics—Part C: Appl. Reviews 34(4) (November 2004)Google Scholar
  35. 35.
    Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Syst. 50, 559–569 (2011)CrossRefGoogle Scholar
  36. 36.
    Changchien, S.W., Lu, T.C.: Mining association rules procedure to support on-line recommendation by customers and products fragmentation. Expert Syst. Appl. 20, 325–335 (2001)CrossRefGoogle Scholar
  37. 37.
    Bermúdez, L., Pérez, J.M., Ayuso, M., Gómez, E., Vázquez, F.J.: A Bayesian Dichotomous, Model with asymmetric link for fraud in insurance. Insurance: Mathematics and Economics 42(2), 779–786 (2008)MATHCrossRefGoogle Scholar
  38. 38.
    Yeh, I., Lien, C.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst. Appl. 36(2), 2473–2480 (2008)CrossRefGoogle Scholar
  39. 39.
    Brockett, P.L., Derrig, R.A., Golden, L.L.: Fraud classification using principal component analysis of RIDITS. J. Risk and Insurance 69(3), 341–371 (2002)CrossRefGoogle Scholar
  40. 40.
    Shaw, M.J., Subramaniam, C., Tan, G.W., Welge, M.E.: Knowledge management and data mining for marketing. Decision Support Syst. 31, 127–137 (2001)CrossRefGoogle Scholar
  41. 41.
    Woo, J.Y., Bae, S.M., Park, S.C.: Visualization method for customer targeting using customer map. Expert Syst. Appl. 28, 763–772 (2005)CrossRefGoogle Scholar
  42. 42.
    Kopanakis, I., Theodoulidis, B.: Visual data mining modeling techniques for the visualization of mining outcomes. J. Visual Languages Comput. 14, 543–589 (2003)CrossRefGoogle Scholar
  43. 43.
    Dwinnell, W.: Data visualization tips for data mining: pattern recognition provides data insight. PC AI Mag. 16(1), 51–57 (2002)Google Scholar
  44. 44.
    Weaver, D.C.: Applying data mining techniques to library design, lead generation and lead optimization. Curr. Opin. Chem. Biol. 8, 264–270 (2004)CrossRefGoogle Scholar
  45. 45.
    Larose, D.T.: Discovering knowledge in data: An introduction to data mining. John Wiley & Sons, Hoboken (2005)Google Scholar
  46. 46.
    Han, J., Kamber, M.: Data mining: Concepts and techniques. Morgan Kaufmann, San Francisco (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Haruna Chiroma
    • 1
  • Sameem Abdul-Kareem
    • 1
  • Adamau Abubakar
    • 2
  1. 1.Department of Artificial IntelligenceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Computer Science, Faculty of Information and Communication TechnologyInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations