Trajectory Optimization Using Virtual Motion Camouflage and Particle Swarm Optimization

  • Dong Jun Kwak
  • Byunghun Choi
  • H. Jin Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8102)

Abstract

This paper investigates a new numerical method to solve a nonlinear constrained trajectory optimization problem. Especially, we consider a problem constrained on the terminal angle and time. The proposed algorithm is based on the virtual motion camouflage (VMC) and particle swarm optimization (PSO) and is called VMCPSO. VMC changes the typical full space optimal problem to the subspace optimal problem, so it can reduce the dimension of the original problem by using path control parameters (PCPs). If the PCPs are optimized, then the optimal path can be obtained. Therefore, we employ PSO to optimize these PCPs. The optimization results show that the optimal path considering the terminal angle and time is effectively generated using VMCPSO.

Keywords

Trajectory optimization virtual motion camouflage particle swarm optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Annals of Operations Research 37(1), 357–373 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Betts, J.T.: Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics 21(2), 193–207 (1998)MATHCrossRefGoogle Scholar
  3. 3.
    Xu, Y.: Virtual motion camouflage and suboptimal trajectory design. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2007)Google Scholar
  4. 4.
    Xu, Y.: Subspace optimal control and motion camouflage. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2008)Google Scholar
  5. 5.
    Xu, Y., Basset, G.: Pre and post optimality checking of the virtual motion camouflage based nonlinear constrained subspace optimal control. In: AIAA Guidance, Navigation, and Control Conference (2009)Google Scholar
  6. 6.
    Xu, Y., Basset, G.: Sequential virtual motion camouflage method for nonlinear constrained optimal trajectory control. Automatica 48(7), 1273–1285 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Srinivasan, M.V., Davey, M.: Strategies for active camouflage of motion. Proceedings of the Royal Society of London. Series B: Biological Sciences 259(1354), 19–25 (1995)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Fahroo, F., Ross, I.M.: Costate estimation by a legendre pseudospectral method. Journal of Guidance, Control, and Dynamics 24(2), 270–277 (2001)CrossRefGoogle Scholar
  10. 10.
    Clerc, M., Kennedy, J.: The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dong Jun Kwak
    • 1
  • Byunghun Choi
    • 1
  • H. Jin Kim
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations