Advertisement

Clinical Careflows Aided by Uncertainty Representation Models

  • Tiago Oliveira
  • João Neves
  • Ernesto Barbosa
  • Paulo Novais
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)

Abstract

Choosing an appropriate support for Clinical Decision Support Systems is a complicated task, and dependent on the domain in which the system will intervene. The development of wide solutions, which are transversal to different clinical specialties, is impaired by the existence of complex decision moments that reflect the uncertainty and imprecision that are often present in these processes. The need for solutions that combine the relational nature of declarative knowledge with other models, capable of handling that uncertainty, is a necessity that current systems may be faced with. Following this line of thought, this work introduces an ontology for the representation of Clinical Practice Guidelines, with a case-study regarding colorectal cancer. It also presents two models, one based on Bayesian Networks, and another one on Artificial Neural Networks, for colorectal cancer prognosis. The objective is to observe how well these two ways of obtaining and representing knowledge are complementary, and how the machine learning models perform, attending to the available information.

Keywords

Clinical Decision Support Systems Computer-Interpretable Guidelines Clinical Uncertainty Machine Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaushal, R., Shojania, K.G., Bates, D.W.: Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Archives of Internal Medicine 163(12), 1409–1416 (2003)CrossRefGoogle Scholar
  2. 2.
    Musen, M.A., Shahar, Y., Shortliffe, E.H.: Clinical decision-support systems. Biomedical Informatics, 698–736 (2006)Google Scholar
  3. 3.
    Rosenbrand, K., Croonenborg, J., Wittenberg, J.: Guideline Development. In: Teije, A., Miksch, S., Lucas, P. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, pp. 3–22 (2008)Google Scholar
  4. 4.
    Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M., Boyle, P.: Estimates of the cancer incidence and mortality in Europe in 2006. Annals of Oncology: Official Journal of the European Society for Medical Oncology 18(3), 581–592 (2007)CrossRefGoogle Scholar
  5. 5.
    McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommendation 10, 1–19 (2004)Google Scholar
  6. 6.
    Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. International Journal of Medical Informatics 77(12), 787–808 (2008)CrossRefGoogle Scholar
  7. 7.
    Oliveira, T., Novais, P., Neves, J.: Development and implementation of clinical guidelines: An artificial intelligence perspective. Artificial Intelligence Review (2013), doi: 10.1007/s10462-013-9402-2Google Scholar
  8. 8.
    Ohno-Machado, L., et al.: The guideline interchange format. Journal of the American Medical Informatics Association 5(4), 357 (1998)CrossRefGoogle Scholar
  9. 9.
    Vier, E., Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Wilson, P.: PROforma: systems. Computer Methods and Programs in Biomedicine 2607(97) (1997)Google Scholar
  10. 10.
    Tu, S., et al.: The SAGE Guideline Model: achievements and overview. Journal of the American Medical Informatics Association 14(5), 589–598 (2007)CrossRefGoogle Scholar
  11. 11.
    Straszecka, E.: Combining uncertainty and imprecision in models of medical diagnosis. Information Sciences 176, 3026–3059 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Horzic, M., Kopljar, M., Cupurdija, K., Bielen, D.V., Vergles, D., Lackovic, Z.: Comparison of P-POSSUM and Cr-POSSUM scores in patients undergoing colorectal cancer resection. Archives of Surgery 142(11), 1043–1048 (2007)CrossRefGoogle Scholar
  13. 13.
    Senagore, A.J., Warmuth, A.J., Delaney, C.P., Tekkis, P.P., Fazio, V.W.: POSSUM, p-POSSUM, and Cr-POSSUM: implementation issues in a United States health care system for prediction of outcome for colon cancer resection. Diseases of the Colon and Rectum 47(9), 1435–1441 (2004)CrossRefGoogle Scholar
  14. 14.
    Witten, I.H., Frank, E., Hall, M.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2011)Google Scholar
  15. 15.
    Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46 (1960)CrossRefGoogle Scholar
  16. 16.
    Lantz, C.A., Nebenzahl, E.: Behavior and interpretation of the κ statistic: Resolution of the two paradoxes. Journal of Clinical Epidemiology 49(4), 431–434 (1996)CrossRefGoogle Scholar
  17. 17.
    Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30(1), 79–82 (2005)CrossRefGoogle Scholar
  18. 18.
    Winawer, S., Fletcher, R., Rex, D., Bond, J., Burt, R., Ferrucci, J., Ganiats, T., Levin, T., Woolf, S., Johnson, D., Kirk, L., Litin, S., Simmang, C.: Colorectal cancer screening and surveillance: Clinical guidelines and rationale-Update based on new evidence. Gastroenterology 124(2), 544–560 (2003)CrossRefGoogle Scholar
  19. 19.
    Chawla, N.V.: Data mining for imbalanced datasets: An overview. In: Data Mining and Knowledge Discovery Handbook, pp. 853–867. Springer (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tiago Oliveira
    • 1
  • João Neves
    • 2
  • Ernesto Barbosa
    • 1
  • Paulo Novais
    • 1
  1. 1.CCTC/DIUniversity of MinhoBragaPortugal
  2. 2.Hospital of BragaBragaPortugal

Personalised recommendations