Density-Based Clustering in Cloud-Oriented Collaborative Multi-Agent Systems

  • Jelena Fiosina
  • Maksims Fiosins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)

Abstract

The development of new reliable data processing and mining methods based on the synergy between cloud computing and the multi-agent paradigm is of great importance for contemporary and future software systems. Cloud computing provides huge volumes of data and computational resources, whereas the agents make the system components more autonomous, cooperative, and intelligent. This creates the need and gives a very good basis for the development of data analysis, processing, and mining methods to enhance the new agent-based cloud computing (ABCC) architecture. Ad-hoc networks of virtual agents are created in the ABCC architecture to support the dynamic functionality of provided services, and data processing methods are very important at the input data processing and network parameter estimation stage. In this study, we present a decentralized kernel-density-based clustering algorithm that fits with the general architecture of ABCC systems. We conduct several experiments to demonstrate the capabilities of the new approach and analyse its efficiency.

Keywords

Cloud computing architecture distributed data processing and mining multiagent systems decentralized clustering kernel density estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Sym. on Biocomputing 7, pp. 6–17 (2002)Google Scholar
  2. 2.
    Fiosina, J., Fiosins, M.: Cooperative regression-based forecasting in distributed traffic networks. In: Memon, Q.A. (ed.) Distributed Network Intelligence, Security and Applications, ch. 1, pp. 3–37. CRC Press, Taylor and Francis Group (2013)Google Scholar
  3. 3.
    Fiosina, J., Fiosins, M.: Selecting the shortest itinerary in a cloud-based distributed mobility network. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F., Gonzalez, S.R. (eds.) Distrib. Computing & Artificial Intelligence. AISC, vol. 217, pp. 103–110. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Fiosina, J., Fiosins, M., Müller, J.P.: Mining the traffic cloud: Data analysis and optimization strategies for cloud-based cooperative mobility management. In: Casillas, J., Martínez-López, F.J., Vicari, R., De la Prieta, F. (eds.) Management Intelligent Systems. AISC, vol. 220, pp. 25–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Fiosins, M., Fiosina, J., Müller, J., Görmer, J.: Agent-based integrated decision making for autonomous vehicles in urban traffic. In: Demazeau, Y., Pěchoucěk, M., Corchado, J.M., Pérez, J.B. (eds.) Adv. on Prac. Appl. of Agents and Mult. Sys. AISC, vol. 88, pp. 173–178. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer, Heidelberg (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Hinneburg, A., Gabriel, H.-H.: DENCLUE 2.0: Fast clustering based on kernel density estimation. In: Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 70–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: The KDEC scheme. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 104–122. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Armbrust, M., et al.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  10. 10.
    Ogston, E., Overeinder, B., van Steen, M., Brazier, F.: A method for decentralized clustering in large multi-agent systems. In: Proc. of 2nd Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 789–796 (2003)Google Scholar
  11. 11.
    Talia, D.: Cloud computing and software agents: Towards cloud intelligent services. In: Proc. of the 12th Workshop on Objects and Agents, vol. 741, pp. 2–6 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jelena Fiosina
    • 1
  • Maksims Fiosins
    • 1
  1. 1.Institute of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations