Support Vector Forecasting of Solar Radiation Values

  • Yvonne Gala
  • Ángela Fernández
  • Julia Díaz
  • José R. Dorronsoro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


The increasing importance of solar energy has made the accurate forecasting of radiation an important issue. In this work we apply Support Vector Regression to downscale and improve 3-hour accumulated radiation forecasts for two locations in Spain. We use either direct 3-hour SVR-refined forecasts or we build first global accumulated daily predictions and disaggregate them into 3-hour values, with both approaches outperforming the base forecasts. We also interpolate the 3-hour forecasts into hourly values using a clear sky radiation model. Here again the disaggregated SVR forecast perform better than the base ones, but the SVR advantage is now less marked. This may be because of the clear sky assumption made for interpolation not being adequate for cloudy days or because of the underlying clear sky model not being adequate enough. In any case, our study shows that machine learning methods or, more generally, hybrid artificial intelligence systems are quite relevant for solar energy prediction.


Solar energy radiation support vector regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bird, R.E., Hulstrom, R.: Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Tech. Rep. No. SERI/TR-642-761, Solar Energy Research Institute, Golden, CO (1981)Google Scholar
  2. 2.
    Bofinger, S., Heilscher, G.: Solar electricity forecast–approaches and first results. In: 21st European Photovoltaic Solar Energy Conference (2006)Google Scholar
  3. 3.
    Espinar, B., Ramires, L., Drews, A., Beyer, H.G., Zarzalejo, L.F., Polo, J., Martin, L.: Analysis of different comparison parameters applied to solar radiation data from satellite and german radiometric stations. Solar Energy 83(1), 118–125 (2009)CrossRefGoogle Scholar
  4. 4.
    Guarnieri, R., Martins, F., Pereira, E., Chuo, S.: Solar radiation forecasting using artificial neural networks. National Institute for Space Research 1, 1–34 (2008)Google Scholar
  5. 5.
    Jensenius, J., Cotton, G.: The development and testing of automated solar energy forecasts based on the model output statistics (MOS) technique. In: 1st Workshop on Terrestrial Solar Resource Forecasting and on Use of Satellites for Terrestrial Solar Resource Assessment, pp. 22–29 (1981)Google Scholar
  6. 6.
    Kandilli, C., Ulgen, K.: Solar illumination and estimating daylight availability of global solar irradiance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30, 1127–1140 (2008)CrossRefGoogle Scholar
  7. 7.
    Kasten, F., Young, A.: Revised optical air mass tables and approximation formula. Applied Optics 38, 4735–4738 (1989)CrossRefGoogle Scholar
  8. 8.
    Lorenz, E., Remund, J., Müller, S., Traunmüller, W., Steinmaurer, G., Ruiz-Arias, J., Fanego, V., Ramirez, L., Romeo, M., Kurz, C., Pomares, L., Guerrero, C.: Benchmarking of different approaches to forecast solar irradiance. In: 24th European Photovoltaic Solar Energy Conference, pp. 4199–4208 (2009)Google Scholar
  9. 9.
    Mathiesen, P., Kleissl, J.: Evaluation of numerical weather prediction for intra-day solar forecasting in the continental united states. Solar Energy 85, 967–977 (2011)CrossRefGoogle Scholar
  10. 10.
    Meinel, A.B., Meinel, M.P.: Applied Solar Energy. Addison Wesley Publishing Co. (1976)Google Scholar
  11. 11.
    Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic applications: A review. Progress in Energy and Combustion Science 34(5), 574–632 (2008)CrossRefGoogle Scholar
  12. 12.
    Myers, D.R.: Solar radiation modeling and measurements for renewable energy applications: data and model quality. Energy 30(9), 1517–1531 (2005)CrossRefGoogle Scholar
  13. 13.
    Perez, R., Kivalov, S., Schlemmer, J., Hemker Jr., K., Renné, D., Hoff, T.E.: Validation of short and medium term operational solar radiation forecasts in the US. Solar Energy 84(12), 2161–2172 (2010)CrossRefGoogle Scholar
  14. 14.
    Remund, J., Perez, R., Lorenz, E.: Comparision of solar radiation forecasts for the USA. In: European PV Conference, Valencia, Spain (2008)Google Scholar
  15. 15.
    Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yvonne Gala
    • 1
  • Ángela Fernández
    • 1
  • Julia Díaz
    • 1
  • José R. Dorronsoro
    • 1
  1. 1.Departamento de Ingeniería Informática and Instituto de Ingeniería del ConocimientoUniversidad Autónoma de MadridMadridSpain

Personalised recommendations