Abstract
An artificial Ant Colony System (ACS) algorithm to solve general-purpose combinatorial Optimization Problems (COP) that extends previous AC models [21] by the inclusion of a negative pheromone, is here described. Several Traveling Salesman Problem (TSP) were used as benchmark. We show that by using two different sets of pheromones, a second-order coevolved compromise between positive and negative feedbacks achieves better results than single positive feedback systems. The algorithm was tested against known NP-complete combinatorial Optimization Problems, running on symmetrical TSPs. We show that the new algorithm compares favorably against these benchmarks, accordingly to recent biological findings by Robinson [26,27], and Grüter [28] where “No entry” signals and negative feedback allows a colony to quickly reallocate the majority of its foragers to superior food patches. This is the first time an extended ACS algorithm is implemented with these successful characteristics.
Keywords
- Self-Organization
- Stigmergy
- Co-Evolution
- Swarm Intelligence
- Dynamic Optimization
- Foraging
- Cooperative Learning
- Combinatorial Optimization problems
- Symmetrical Traveling Salesman Problems (TSP)
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, MI (1975)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, USA (1989)
Fogel, D.B.: Evolutionary Computation. IEEE Press, Piscataway (1995)
Siarry, P., Michalewicz, Z.: Advances in Metaheuristics for Hard Optimization. Springer (2008)
Gonzalez, T.F. (ed.): Approximation Algorithms and Metaheuristics. CRC Press (2007)
Alba, E.: Parallel Metaheuristics. A New Class of Algorithms. Wiley, Cambridge (2005)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute series in the Sciences of Complexity. Oxford Univ. Press, New York (1999)
Blum, C., Merkle, D. (eds.): Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer, Heidelberg (2008)
Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)
Chialvo, D.R., Millonas, M.M.: How Swarms build Cognitive Maps. In: Steels, L. (ed.) The Biology and Technology of Intelligent Autonomous Agents. NATO ASI Series, vol. 144, pp. 439–450 (1995)
Millonas, M.M.: A Connectionist-type model of Self-Organized Foraging and Emergent Behavior in Ant Swarms. J. Theor. Biol. 159, 529 (1992)
Ramos, V., Fernandes, C., Rosa, A.C.: On Self-Regulated Swarms, Societal Memory, Speed and Dynamics. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial Life X - Proc. of the Tenth Int. Conf. on the Simulation and Synthesis of Living Systems, Bloomington, Indiana, USA, pp. 393–399. MIT Press (2006)
Dorigo, M., Maniezzo, V., Colorni, A.: Positive Feedback as a Search Strategy, Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy (1991)
Dorigo, M., Di Caro, G.: The Ant Colony Optimization Metaheuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, p. 11. McGraw-Hill, New York (1999)
Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for Discrete Optimization. Artificial Life 5(2), 137 (1999)
Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interpretation des termites constructeurs. Insect Sociaux 6, 41–83 (1959)
Theraulaz, G., Bonabeau, E.: A Brief History of Stigmergy. Artificial Life, Special Issue Dedicated to Stigmergy 5(2), 97–116 (1999)
Abraham, A., Grosan, C., Ramos, V.: Stigmergic Optimization. SCI, vol. 31. Springer, Heidelberg (2006)
Diaf, M., Hammouche, K., Siarry, P.: From the Real Ant to the Artificial Ant. In: Nature-Inspired Informatics for Intelligent Applications and Knowledge Discovery, pp. 298–322 (2010)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst., Man, and Cybern. - Part B 26(1), 29 (1996)
Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning approach to the Travelling Salesman Problem. IEEE Trans. Evol. Computation 1(1), 53 (1997)
Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Comput. Syst. 16(8), 889 (2000)
Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on Machine Learning, ML 1995, Tahoe City, CA, pp. 252–260. Morgan Kaufmann (1995)
Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Travelling Salesman Problem. Wiley, New York (1985)
Ramos, V., Almeida, F.: Artificial Ant Colonies in Digital Image Habitats: A Mass Behavior Effect Study on Pattern Recognition. In: Dorigo, M., Middendorf, M., Stützle, T. (eds.) From Ant Colonies to Artificial Ants – ANTS 2000 - 2nd Int. Wkshp on Ant Algorithms, pp. 113–116 (2000)
Robinson, E.J.H., et al.: Insect communication - ‘No entry’ signal in ant foraging. Nature 438(7067), 442 (2005)
Robinson, E.J.H., Jackson, D., Hocombe, M., Ratnieks, F.L.W.: No entry signal in ant foraging (Hymenoptera: Formicidae): new insights from an agent-based model. Myrmecological News 10, 120 (2007)
Grüter, C., Schürch, R., Czaczkes, T.J., Taylor, K., Durance, T., et al.: Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants. PLoS ONE 7(9), e44501 (2012), doi:10.1371/journal.pone.0044501
Rodrigues, D.M.S., Louçã, J., Ramos, V.: From Standard to Second-Order Swarm Intelligence Phase-space Maps. In: Thurner, S. (ed.) 8th European Conference on Complex Systems, poster, Vienna, Austria (September 2011)
Ramos, V., Rodrigues, D.M.S., Louçã, J.: Spatio-Temporal Dynamics on Co-Evolved Stigmergy. In: Thurner, S. (ed.) 8th European Conference on Complex Systems, poster, Vienna, Austria (September 2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramos, V., Rodrigues, D.M.S., Louçã, J. (2013). Second Order Swarm Intelligence. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-40846-5_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40845-8
Online ISBN: 978-3-642-40846-5
eBook Packages: Computer ScienceComputer Science (R0)