Skip to main content

Second Order Swarm Intelligence

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8073)

Abstract

An artificial Ant Colony System (ACS) algorithm to solve general-purpose combinatorial Optimization Problems (COP) that extends previous AC models [21] by the inclusion of a negative pheromone, is here described. Several Traveling Salesman Problem (TSP) were used as benchmark. We show that by using two different sets of pheromones, a second-order coevolved compromise between positive and negative feedbacks achieves better results than single positive feedback systems. The algorithm was tested against known NP-complete combinatorial Optimization Problems, running on symmetrical TSPs. We show that the new algorithm compares favorably against these benchmarks, accordingly to recent biological findings by Robinson [26,27], and Grüter [28] where “No entry” signals and negative feedback allows a colony to quickly reallocate the majority of its foragers to superior food patches. This is the first time an extended ACS algorithm is implemented with these successful characteristics.

Keywords

  • Self-Organization
  • Stigmergy
  • Co-Evolution
  • Swarm Intelligence
  • Dynamic Optimization
  • Foraging
  • Cooperative Learning
  • Combinatorial Optimization problems
  • Symmetrical Traveling Salesman Problems (TSP)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40846-5_41
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40846-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, MI (1975)

    Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, USA (1989)

    MATH  Google Scholar 

  3. Fogel, D.B.: Evolutionary Computation. IEEE Press, Piscataway (1995)

    Google Scholar 

  4. Siarry, P., Michalewicz, Z.: Advances in Metaheuristics for Hard Optimization. Springer (2008)

    Google Scholar 

  5. Gonzalez, T.F. (ed.): Approximation Algorithms and Metaheuristics. CRC Press (2007)

    Google Scholar 

  6. Alba, E.: Parallel Metaheuristics. A New Class of Algorithms. Wiley, Cambridge (2005)

    CrossRef  MATH  Google Scholar 

  7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute series in the Sciences of Complexity. Oxford Univ. Press, New York (1999)

    MATH  Google Scholar 

  8. Blum, C., Merkle, D. (eds.): Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer, Heidelberg (2008)

    Google Scholar 

  9. Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  10. Chialvo, D.R., Millonas, M.M.: How Swarms build Cognitive Maps. In: Steels, L. (ed.) The Biology and Technology of Intelligent Autonomous Agents. NATO ASI Series, vol. 144, pp. 439–450 (1995)

    Google Scholar 

  11. Millonas, M.M.: A Connectionist-type model of Self-Organized Foraging and Emergent Behavior in Ant Swarms. J. Theor. Biol. 159, 529 (1992)

    CrossRef  Google Scholar 

  12. Ramos, V., Fernandes, C., Rosa, A.C.: On Self-Regulated Swarms, Societal Memory, Speed and Dynamics. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial Life X - Proc. of the Tenth Int. Conf. on the Simulation and Synthesis of Living Systems, Bloomington, Indiana, USA, pp. 393–399. MIT Press (2006)

    Google Scholar 

  13. Dorigo, M., Maniezzo, V., Colorni, A.: Positive Feedback as a Search Strategy, Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy (1991)

    Google Scholar 

  14. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Metaheuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, p. 11. McGraw-Hill, New York (1999)

    Google Scholar 

  15. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for Discrete Optimization. Artificial Life 5(2), 137 (1999)

    CrossRef  Google Scholar 

  16. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interpretation des termites constructeurs. Insect Sociaux 6, 41–83 (1959)

    CrossRef  Google Scholar 

  17. Theraulaz, G., Bonabeau, E.: A Brief History of Stigmergy. Artificial Life, Special Issue Dedicated to Stigmergy 5(2), 97–116 (1999)

    CrossRef  Google Scholar 

  18. Abraham, A., Grosan, C., Ramos, V.: Stigmergic Optimization. SCI, vol. 31. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  19. Diaf, M., Hammouche, K., Siarry, P.: From the Real Ant to the Artificial Ant. In: Nature-Inspired Informatics for Intelligent Applications and Knowledge Discovery, pp. 298–322 (2010)

    Google Scholar 

  20. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst., Man, and Cybern. - Part B 26(1), 29 (1996)

    CrossRef  Google Scholar 

  21. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning approach to the Travelling Salesman Problem. IEEE Trans. Evol. Computation 1(1), 53 (1997)

    CrossRef  Google Scholar 

  22. Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Comput. Syst. 16(8), 889 (2000)

    CrossRef  Google Scholar 

  23. Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on Machine Learning, ML 1995, Tahoe City, CA, pp. 252–260. Morgan Kaufmann (1995)

    Google Scholar 

  24. Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Travelling Salesman Problem. Wiley, New York (1985)

    Google Scholar 

  25. Ramos, V., Almeida, F.: Artificial Ant Colonies in Digital Image Habitats: A Mass Behavior Effect Study on Pattern Recognition. In: Dorigo, M., Middendorf, M., Stützle, T. (eds.) From Ant Colonies to Artificial Ants – ANTS 2000 - 2nd Int. Wkshp on Ant Algorithms, pp. 113–116 (2000)

    Google Scholar 

  26. Robinson, E.J.H., et al.: Insect communication - ‘No entry’ signal in ant foraging. Nature 438(7067), 442 (2005)

    CrossRef  Google Scholar 

  27. Robinson, E.J.H., Jackson, D., Hocombe, M., Ratnieks, F.L.W.: No entry signal in ant foraging (Hymenoptera: Formicidae): new insights from an agent-based model. Myrmecological News 10, 120 (2007)

    Google Scholar 

  28. Grüter, C., Schürch, R., Czaczkes, T.J., Taylor, K., Durance, T., et al.: Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants. PLoS ONE 7(9), e44501 (2012), doi:10.1371/journal.pone.0044501

    Google Scholar 

  29. Rodrigues, D.M.S., Louçã, J., Ramos, V.: From Standard to Second-Order Swarm Intelligence Phase-space Maps. In: Thurner, S. (ed.) 8th European Conference on Complex Systems, poster, Vienna, Austria (September 2011)

    Google Scholar 

  30. Ramos, V., Rodrigues, D.M.S., Louçã, J.: Spatio-Temporal Dynamics on Co-Evolved Stigmergy. In: Thurner, S. (ed.) 8th European Conference on Complex Systems, poster, Vienna, Austria (September 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramos, V., Rodrigues, D.M.S., Louçã, J. (2013). Second Order Swarm Intelligence. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40846-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40845-8

  • Online ISBN: 978-3-642-40846-5

  • eBook Packages: Computer ScienceComputer Science (R0)