Agent Participation in Context-Aware Workflows

  • José M. Fernández-de-Alba
  • Rubén Fuentes-Fernández
  • Juán Pavón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


Smart environments assist users in the activities taking place in their influence areas. These activities are occasionally part of workflows and have multiple physical or computational participants playing different roles. The system has to monitor the development of the activities, and to take the necessary actions for them and the workflow to reach a certain end. These tasks largely depend on obtaining data from sensors, inferring the proper information from those data, and using actuators consequently. The context-aware paradigm pursues helping to develop these applications. In certain situations, computational participants need to take complex decisions. Agents are a convenient way to describe entities with sophisticated and flexible behaviors that adapt to complex and evolving environments and collaborate to reach certain goals. Most works in this area make use of agents for infrastructure-related or domain-specific tasks, whereas this research proposes patterns to integrate agents on top of an existing context-aware architecture in order to exploit its capabilities to improve functionality. A case study on guiding a user along a path illustrates this approach.


software agent software architecture context-awareness workflow management ambient intelligence ambient-assisted living 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A Java-Based Agent Platform for Programming Wireless Sensor Networks. Computer Journal 54(3), 439–454 (2011)CrossRefGoogle Scholar
  2. 2.
    Fernández-de-Alba, J.M., Campillo, P., Fuentes-Fernández, R., Pavón, J.: Opportunistic Sensor Interpretation in a Virtual Smart Environment. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 109–116. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Fernández-de-Alba, J.M., Fuentes-Fernández, R., Pavón, J.: Dynamic Workflow Management for Context-Aware Systems. In: Novais, P., Hallenborg, K., Tapia, D.I., Rodríguez, J.M.C. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 153, pp. 181–188. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Context-Aware Workflow Management. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 47–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bergmann, R.: Ambient intelligence for decision making in fire service organizations. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B., Tscheligi, M., Wichert, R., Aarts, E., Buchmann, A.P. (eds.) AmI 2007. LNCS, vol. 4794, pp. 73–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Corkill, D.: Blackboard systems. AI Expert 6(9), 40–47 (1991)Google Scholar
  7. 7.
    Gómez-Sanz, J.J., Fernández, C.R., Arroyo, J.: Model Driven Development and Simulations with the INGENIAS Agent Framework. Simulation Modelling Practice and Theory 18(10), 1468–1482 (2010)CrossRefGoogle Scholar
  8. 8.
    Han, J., Cho, Y., Kim, E., Choi, J.-Y.: A Ubiquitous Workflow Service Framework. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3983, pp. 30–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kopp, S., Gesellensetter, L., Krämer, N.C., Wachsmuth, I.: A conversational agent as museum guide – design and evaluation of a real-world application. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 329–343. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Ranganathan, A., McFaddin, S.: Using Workflows to Coordinate Web Services in Pervasive Computing Environments. In: 2004 IEEE International Conference on Web Services (ICWS 2004), pp. 288–295. IEEE Computer Society, Washington, DC (2004)CrossRefGoogle Scholar
  11. 11.
    Venturini, V., Carbó, J., Molina, J.M.: Methodological Design and Comparative Evaluation of a MAS Providing AmI. Expert Systems with Applications 39(12), 10656–10673 (2012)CrossRefGoogle Scholar
  12. 12.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José M. Fernández-de-Alba
    • 1
  • Rubén Fuentes-Fernández
    • 1
  • Juán Pavón
    • 1
  1. 1.Facultad de Informática de la Universidad Complutense de MadridMadridSpain

Personalised recommendations