Advertisement

Modified Dendrite Morphological Neural Network Applied to 3D Object Recognition on RGB-D Data

  • Humberto Sossa
  • Elizabeth Guevara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)

Abstract

In this paper a modified dendrite morphological neural network (DMNN) is applied for 3D object recognition. For feature extraction, shape and color information were used. The first two Hu’s moment invariants are calculated based on 2D grayscale images, and color attributes were obtained converting the RGB (Red, Green, Blue) image to the HSI (Hue, Saturation, Intensity) color space. For testing, a controlled lab color image database and a real image dataset were considered. The problem with the real image dataset, without controlling light conditions, is that objects are difficult to segment using only color information; for tackling this problem the Depth data provided by the Microsoft Kinect for Windows sensor was used. A comparative analysis of the proposed method with a MLP (Multilayer Perceptron) and SVM (Support Vector Machine) is presented and the results reveal the advantages of the modified DMNN.

Keywords

Dendrite morphological neural network 3D object recognition Kinect depth segmentation color classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrus, N.: Kinect RGB Demo (2011)Google Scholar
  2. 2.
    Chyzhyk, D., Graña, M.: Optimal hyperbox shrinking in dendritic computing applied to Alzheimer’s disease detection in MRI. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 543–550. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Davidson, J.L., Hummer, F.: Morphology neural networks: An introduction with applications. Circuits Systems Signal Process 12(2), 177–210 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    González, R., Woods, R.: Digital Image Processing. Pearson (2007)Google Scholar
  5. 5.
    Graña, M.: Special issue on: Lattice computing and natural computing. Neurocomputing 72(10-12), 2065–2066 (2009)CrossRefGoogle Scholar
  6. 6.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8, 179–187 (1962)zbMATHGoogle Scholar
  7. 7.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill (1995)Google Scholar
  8. 8.
    Nene, D., Nayar, S., Murase, H.: Columbia object image library: COIL-100 (1996)Google Scholar
  9. 9.
    Ritter, G.X., Iancu, L., Urcid, G.: Morphological perceptrons with dendritic structure. In: 12th IEEE International Conference in Fuzzy Systems, FUZZ 2003, vol. 2, pp. 1296–1301 (2003)Google Scholar
  10. 10.
    Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 4, pp. 709–717 (1996)Google Scholar
  11. 11.
    Ritter, G.X., Urcid, G.: Lattice algebra approach to single-neuron computation. IEEE Transactions on Neural Networks 14(2), 282–295 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ritter, G.X., Urcid, G.: Learning in lattice neural networks that employ dendritic computing. Computational Intelligence Based on Lattice Theory 67, 25–44 (2007)CrossRefGoogle Scholar
  13. 13.
    Sossa, H., Guevara, E.: Efficient training for dendrite morphological neural networks. Submitted to Neurocomputing - Elsevier JournalGoogle Scholar
  14. 14.
    Sossa, H., Guevara, E.: Modified dendrite morphological neural network applied to 3D object recognition. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2012. LNCS, vol. 7914, pp. 314–324. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Wöhler, C.: 3D Computer Vision: Efficient Methods and Applications. Springer (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Humberto Sossa
    • 1
  • Elizabeth Guevara
    • 1
  1. 1.Instituto Politécnico Nacional, CICMéxico, D.F.

Personalised recommendations