Fall Detection Using Kinect Sensor and Fall Energy Image

  • Bogdan Kwolek
  • Michal Kepski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


One of the main reasons for low acceptance by seniors the available technology for automatic fall detection is that the existing devices generate too much false alarms. Additionally, the camera-based devices do not preserve the privacy adequately. In our approach an accelerometer is utilized to indicate a potential fall. A fall hypothesis is then verified in the second stage in which we employ a depth image, which was shot at the moment of the potential fall. A detector that was trained in advance on features extracted both from depth images and points cloud is responsible for verification whether a person is lying on the floor. After all, to reliably distinguish the fall from fall-like activities we perform final verification, in which we employ the proposed fall energy image. The fall energy image expresses the distribution of the person’s motion in the set of images preceding the fall.


Depth image and point cloud processing fall detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vision Appl. 23(2), 255–281 (2012)CrossRefGoogle Scholar
  2. 2.
    Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)CrossRefGoogle Scholar
  3. 3.
    Cleary, J., Trigg, L.: An instance-based learner using an entropic distance measure. In: Int. Conf. on Machine Learning, pp. 108–114 (1995)Google Scholar
  4. 4.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (1992)Google Scholar
  5. 5.
    Cover, T.M., Thomas, J.A.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)Google Scholar
  6. 6.
    Cucchiara, R., Prati, A., Vezzani, R.: A multi-camera vision system for fall detection and alarm generation. Expert Systems 24(5), 334–345 (2007)CrossRefGoogle Scholar
  7. 7.
    Foroughi, H., Naseri, A., Saberi, A., Yazdi, H.: An eigenspace-based approach for human fall detection using integrated time motion image and neural network. In: 9th Int. Conf. on Signal Processing, pp. 1499–1503 (2008)Google Scholar
  8. 8.
    Horn, B.: Robot Vision. The MIT Press, Cambridge (1986)Google Scholar
  9. 9.
    Jansen, B., Deklerck, R.: Context aware inactivity recognition for visual fall detection. In: Proc. IEEE Pervasive Health Conference and Workshops, pp. 1–4 (2006)Google Scholar
  10. 10.
    Kepski, M., Kwolek, B., Austvoll, I.: Fuzzy inference-based reliable fall detection using Kinect and accelerometer. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 266–273. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Kepski, M., Kwolek, B.: Human fall detection using Kinect sensor. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 743–752. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through ”v-disparity” representation. In: Intelligent Vehicle Symposium, vol. 2, pp. 646–651. IEEE (June 2002)Google Scholar
  13. 13.
    Marshall, S.W., Runyan, C.W., Yang, J., Coyne-Beasley, T., Waller, A.E., Johnson, R.M., Perkis, D.: Prevalence of selected risk and protective factors for falls in the home. American J. of Preventive Medicine 8(1), 95–101 (2005)CrossRefGoogle Scholar
  14. 14.
    Mastorakis, G., Makris, D.: Fall detection system using Kinect’s infrared sensor. J. of Real-Time Image Processing, 1–12 (2012)Google Scholar
  15. 15.
    Miaou, S.G., Sung, P.H., Huang, C.Y.: A customized human fall detection system using omni-camera images and personal information. Distributed Diagnosis and Home Healthcare, 39–42 (2006)Google Scholar
  16. 16.
    Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: Principles and approaches. Neurocomputing 100, 144–152 (2013), special issue: Behaviours in videoGoogle Scholar
  17. 17.
    Noury, N., Fleury, A., Rumeau, P., Bourke, A., ÓLaighin, G., Rialle, V., Lundy, J.: Fall detection - principles and methods. In: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 1663–1666 (2007)Google Scholar
  18. 18.
    Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3D head tracking to detect falls of elderly people. In: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 6384–6387 (2006)Google Scholar
  19. 19.
    Shi, G., Chan, C.S., Li, W.J., Leung, K.S., Zou, Y., Jin, Y.: Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier. IEEE Sensors Journal 9(5), 495–503 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bogdan Kwolek
    • 1
  • Michal Kepski
    • 2
  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.University of RzeszowRzeszówPoland

Personalised recommendations