A Hybrid Inference Approach for Building Fuzzy DSSs Based on Clinical Guidelines

  • Aniello Minutolo
  • Massimo Esposito
  • Giuseppe De Pietro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


Clinical practice guidelines are expected to promote more consistent, effective, and efficient medical practices, especially if implemented in clinical Decision Support Systems (DSSs). With the goal of properly representing and efficiently handling clinical guidelines affected by uncertainty and inter-connected between them, this paper proposes a hybrid fuzzy inference approach for building fuzzy DSSs. It provides a set of specifically devised functionalities for best modeling and reasoning on the particular clinical knowledge underpinning guidelines: i) it organizes the whole fuzzy DSS into self-contained sub-systems which are able to independently reason on piece of knowledge according to their peculiar inference scheme; ii) a global inference scheme has been defined for handling and reasoning on such sub-systems, according to the classical crisp expert system approach. As a proof of concept, the proposed approach has been applied to a practical case, showing its capability of supporting multiple levels of inference and, thus, highlighting the possibility of being profitably used to model and reason on complex clinical guidelines in actual medical scenarios.


Decision Support Systems Fuzzy Logic Clinical Guidelines Multi-Level Inference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leape, L.: Practice guidelines and standards: An overview. QRB, Quality Review Bulletin 16(2), 42 (1990)Google Scholar
  2. 2.
    Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Greenes, R.A., Patel, V.L., Shortliffe, E.H.: Representation primitives, process models and patient data in computer-interpretable clinical practice guidelines: A literature review of guideline representation models. Int. Journal Med. Inform. 68(1-3), 59–70 (2002)CrossRefGoogle Scholar
  3. 3.
    Ainon, R.N., Bulgiba, A.M., Lahsasna, A.: AMI Screening Using Linguistic Fuzzy Rules. Journal of Medical Systems 36(2), 463–473 (2012)CrossRefGoogle Scholar
  4. 4.
    Adeli, A., Neshat, M.: A fuzzy expert system for heart disease diagnosis. In: Proc. of International Multiconference of Engineering and Computer Scientists, pp. 134–139 (2010)Google Scholar
  5. 5.
    Lahsasna, A., Ainon, R.N., Zainuddin, R., Bulgiba, A.: Design of a Fuzzy-based Decision Support System for Coronary Heart Disease Diagnosis. JM Syst. 36, 3293–3306 (2012)Google Scholar
  6. 6.
    Shiffman, R.: Representation of clinical practice guidelines in conventional and augmented decision tables. J. of the American Medical Informatics Association 4(5), 382–393 (1997)CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: A theory of approximate reasoning. In: Machine Intelligence, pp. 149–194. John Wiley & Sons, New York (1979)Google Scholar
  8. 8.
    Torra, V.: A review of the construction of hierarchical fuzzy systems. Int. J. Intell. Syst. 17, 531–543 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Sottara, D., Mello, P., Proctor, M.: Adding Uncertainty to a Rete-OO Inference Engine. In: Proc. of the Int. Symposium on Rule Representation, Interchange and Reasoning on the Web, pp. 104–118 (October 2008)Google Scholar
  10. 10.
    Pan, J., Desouza, G.N., Kak, A.C.: Fuzzyshell: a large-scale expert system shell using fuzzy logic for uncertainty reasoning. IEEE Trans. Fuzzy Syst. 6, 563–581 (1998)CrossRefGoogle Scholar
  11. 11.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  12. 12.
    Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Esposito, M., De Falco, I., De Pietro, G.: An evolutionary-fuzzy DSS for assessing health status in multiple sclerosis disease. Int. J. of Med. Inf. 80(12), e245–e254 (2011) Google Scholar
  14. 14.
    Minutolo, A., Esposito, M., De Pietro, G.: A Fuzzy Decision Support Language for building Mobile DSSs for Healthcare Applications. In: Godara, B., Nikita, K.S. (eds.) MobiHealth 2012. LNICST, vol. 61, pp. 263–270. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Setnes, M., Babuska, R., Kaymak, U., van Nauta Lemke, H.: Similarity measures in fuzzy rule base simplification. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 28(3), 376–386 (1998)CrossRefGoogle Scholar
  16. 16.
    Rabe, K., Hurd, S., Anzueto, A., Barnes, P., Buist, S., Calverley, P., Fukuchi, Y., Jenkins, C., Rodriguez-Roisin, R., van Weel, C., et al.: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: Gold executive summary. American Journal of Respiratory and Critical Care Medicine 176(6), 532 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aniello Minutolo
    • 1
  • Massimo Esposito
    • 1
  • Giuseppe De Pietro
    • 1
  1. 1.Institute for High Performance Computing and NetworkingICAR-CNRNapoliItaly

Personalised recommendations