An Evidential and Context-Aware Recommendation Strategy to Enhance Interactions with Smart Spaces

  • Josué Iglesias
  • Ana M. Bernardos
  • José R. Casar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


This work describes a novel strategy implementing a context-aware recommendation system. It has been conceived to offer an intelligent selection of micro-services used to orchestrate networks of smart objects taking into account users’ needs and preferences. The recommendation offering dynamically evolves depending on users’ micro-service management patterns and users’ context. The complete system has been designed within Dempster-Shafer evidential theory framework, ensuring uncertainty support both at context acquisition and at recommendation configuration level.


Dempster-Shafer evidential theory context-aware services recommendation systems smart spaces smart objects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardos, A.M., Casar, J.R., Cano, J., Bergesio, L.: Enhancing interaction with smart objects through mobile devices. In: Proceedings of the 9th ACM International Symposium on Mobility Management and Wireless Access, MobiWac 2011, pp. 199–202. ACM, New York (2011)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: ACM Conference on Recommender Systems, pp. 335–336 (2008)Google Scholar
  3. 3.
    Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., Devlin, S.: Evidential fusion of sensor data for activity recognition in smart homes. Pervasive and Mobile Computing 5(3), 236–252 (2009)CrossRefGoogle Scholar
  4. 4.
    McKeever, S., Ye, J., Coyle, L., Dobson, S.: Using dempster-shafer theory of evidence for situation inference. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 149–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Casanovas, M., Merigó, J.M.: Fuzzy aggregation operators in decision making with dempster shafer belief structure. Expert Systems with Applications 39, 7138–7149 (2012)CrossRefGoogle Scholar
  6. 6.
    Liu, W., Hughes, J.G., McTear, M.F.: Advances in the dempster-shafer theory of evidence, pp. 441–471. John Wiley & Sons, Inc., New York (1994)Google Scholar
  7. 7.
    Tolstikov, A., Hong, X., Biswas, J., Nugent, C., Chen, L., Parente, G.: Comparison of fusion methods based on dst and dbn in human activity recognition. Journal of Control Theory and Applications 9, 18–27 (2011)CrossRefGoogle Scholar
  8. 8.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  9. 9.
    Sentz, K., Ferson, S.: Combination of evidence in dempster-shafer theory. Technical report, Sandia National Laboratories, SAND 2002-0835 (2002)Google Scholar
  10. 10.
    Savage, L.J.: The theory of statistical decision. Journal of the American Statistical Association 46(253), 55–67 (1951)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Josué Iglesias
    • 1
  • Ana M. Bernardos
    • 1
  • José R. Casar
    • 1
  1. 1.Telecommunications SchoolUniversidad Politécnica de MadridMadridSpain

Personalised recommendations