Advertisement

Qualitative Reasoning on Complex Systems from Observations

  • Gonzalo A. Aranda-Corral
  • Joaquín Borrego-Díaz
  • Juan Galán-Páez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)

Abstract

A hybrid approach to phenomenological reconstruction of Complex Systems (CS), using Formal Concept Analysis (FCA) as main tool for conceptual data mining, is proposed. To illustrate the method, a classic CS is selected (cellular automata), to show how FCA can assist to predict CS evolution under different conceptual descriptions (from different observable features of the CS).

Keywords

Association Rule Cellular Automaton Cellular Automaton Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso-Sanz, R.: LIFE with Short-Term Memory. In: Adamatzky, A. (ed.) Game of Life Cellular Automata, pp. 275–290. Springer (2010)Google Scholar
  2. 2.
    Aranda-Corral, G.A., Borrego-Díaz, J., Giráldez-Cru, J.: Agent-mediated shared conceptualizations in tagging services. J. Multimedia Tools and Applications 65(1), 5–28 (2013)CrossRefGoogle Scholar
  3. 3.
    Aranda-Corral, G.A., Borrego-Díaz, J.: Reconciling Knowledge in Social Tagging Web Services. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010, Part II. LNCS, vol. 6077, pp. 383–390. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Aranda-Corral, G.A., Borrego-Díaz, J., Galán-Páez, J.: Complex Concept Lattices for Simulating Human Prediction in Sport. J. Syst. Science and Complexity 26(1), 117–136 (2013)CrossRefGoogle Scholar
  5. 5.
    Balcázar, J.L., Garriga, G.C., Díaz-López, P.: Reconstructing the rules of 1D cellular automata using closure systems. In: Proceedings of the 2nd European Conference on Complex Systems, pp. 55–61 (2005)Google Scholar
  6. 6.
    Balcázar, J.L., Garriga, G.C.: Horn axiomatizations for sequential data. Theor. Comput. Sci. 371(3), 247–264 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bourgine, P., Chavalarias, D., Perrier, E. (eds.): CSS Roadmap for the Science of Complex Systems (2009)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer (1999)Google Scholar
  9. 9.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’ implications informatives resultant d’un tableau de donnees binaires. Math. Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  10. 10.
    Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ”life”. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  11. 11.
    Gog, A., Chira, C.: Cellular Automata Rule Detection Using Circular Asynchronous Evolutionary Search. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 261–268. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Goldstein, D., Gigerenzer, G.: Fast and frugal forecasting. Int. J. Forecasting 25, 760–772 (2009)CrossRefGoogle Scholar
  13. 13.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. In: Proc. 9th Int. Conf. Cent. Nonlinear Studies on Self-organizing, Collective, and Coop. Phen. in Nat. and Art. Comp. Networks on Emergent Computation, pp. 12–37 (1990)Google Scholar
  14. 14.
    Li, W., Packard, N.: The Structure of the Elementary Cellular Automata Rule Space. Complex Systems 4, 281–297 (1990)MathSciNetGoogle Scholar
  15. 15.
    Li, W., Packard, N.H., Langton, C.G.: Transition phenomena in cellular automata rule space. In: Cellular Automata, pp. 77–94. MIT Press (1991)Google Scholar
  16. 16.
    Li, X., Yeh, A.G.-O.: Data mining of cellular automata’s transition rules. Int. J. Geograp. Inf. Sci. 18(8), 723–744 (2004)CrossRefGoogle Scholar
  17. 17.
    Luxenburger, M.: Implications partielles dans un contexte. Math. Inf. Sci. Hum. 11, 335–355 (1991)MathSciNetGoogle Scholar
  18. 18.
    Marques, M., Manurung, R., Pain, H.: Conceptual representations: What do they have to say about the density classification task by CA? In: Proc. 2006. Eur. Conf. on Complex Systems (2006)Google Scholar
  19. 19.
    Packard, N., Wolfram, S.: 2-Dimensional Cellular Automata. J. Stat. Physics 38(5-6), 901–946 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Piwonska, A., Seredynski, F.: Learning cellular automata rules for pattern reconstruction task. In: Deb, K., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 240–249. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Sanders, J.W., Smith, G.: Emergence and Refinement. Formal Aspects Comp. 24(1), 45–65 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Wootters, W.W., Langton, C.G.: Is there a sharp phase transition for deterministic cellular automata? Phys. D 45(1-3), 95–104 (1990)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gonzalo A. Aranda-Corral
    • 1
  • Joaquín Borrego-Díaz
    • 2
  • Juan Galán-Páez
    • 2
  1. 1.Department of Information TechnologyUniversidad de HuelvaPalos de La FronteraSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversidad de SevillaSevillaSpain

Personalised recommendations