Sequence Alignment Adaptation for Process Diagnostics and Delta Analysis

  • Eren Esgin
  • Pınar Karagoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


Business process management (BPM) paradigm gains growing attention by providing generic process design and execution capabilities. During execution, many business processes leave casual footprints (event logs) at these transactional information systems. Process mining aims to extract business processes by distilling event logs for knowledge. Sequence alignment is a technique that is frequently used in domains including bioinformatics, language/text processing and finance. It aims to arrange structures, such as protein sequences to identify similar regions. In this study, we focus on a hybrid quantitative approach for performing process diagnostics, i.e. comparing the similarity among process models based on the established dominant behavior concept and Needleman-Wunsch algorithm.


Process Mining Sequence Alignment Process Diagnostics Dominant Behavior Needleman-Wunsch Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, K., Zhou, Z., Han, Y., Li, G., Wang, J.: An Algorithm for Calculating Process Similarity to Cluster Open-Source Process Designs. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3252, pp. 107–114. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Gunther, C., Recker, J., Reichert, M.: Using Process Mining to Analyze and Improve Process Flexibility. In: Proc. of BPMDS 2006 (2006)Google Scholar
  3. 3.
    van der Aalst, W.M.P., Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, T.A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data & Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    Măruşter, L., Weijters, A.J.M.M.T., van der Aalst, W.M.P., van den Bosch, A.: Process Mining: Discovering Direct Successors in Process Logs. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 364–373. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Weijters, A., van der Aalst, W.M.P.: Process Mining Discovering Workflow Models from Event-Based Data. Integrated Computer-Aided Engineering (2003)Google Scholar
  6. 6.
    Markus, L.M., Robey, D.: Information Technology and Organizational Change: Causal Structure in Theory and Research. Management Science 34(5), 583–598 (1988)CrossRefGoogle Scholar
  7. 7.
    Gunther, C.W., van der Aalst, W.M.P.: Process Mining in Case Handling Systems. In: Proc. of Multikonferenz Wirtschaftsinformatik 2006 (2006)Google Scholar
  8. 8.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Proc. of the Sixth Intern. Conf. on Extending Database Technology (1998)Google Scholar
  9. 9.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM TOSEM 7(3), 215–249 (1996)CrossRefGoogle Scholar
  10. 10.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data Using Little Thumb. ICAE 10(2), 151–162 (2003)Google Scholar
  11. 11.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. Transaction on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  12. 12.
    Esgin, E., Senkul, P.: Hybrid Approach to Process Mining: Finding Immediate Successors of a Process by Using From-to Chart. In: ICMLA, pp. 664–668 (2009)Google Scholar
  13. 13.
    Francis, R.L., McGinnis, L.F., White, J.A.: Facility Layout and Location: An Analytical Approach. Prentice Hall, New Jersey (1992)Google Scholar
  14. 14.
    Esgin, E., Senkul, P., Cimenbicer, C.: A Hybrid Approach for Process Mining: Using From-to Chart Arranged by Genetic Algorithms. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 178–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Dianati, M., Song, I., Treiber, M.: An Introduction to Genetic Algorithms and Evaluation Stragies. Univ. of Waterloo, CanadaGoogle Scholar
  16. 16.
    Giddens, A.: Central Problems in Social Theory: Action Structure and Contradiction in Social Analysis. University of California Press, Berkley (1979)Google Scholar
  17. 17.
    van der Aalst, W.M.P.: Business Alignment: Using Process Mining as a Tool for Delta Analysis and Conformance Testing. Requirements Engineering 10, 198–211 (2005)CrossRefGoogle Scholar
  18. 18.
    Bunke, H., Shearer, K.: A Graph Distance Metric Based on the Maximal Common Subgraph. Pattern Recognition Letters 19, 255–259 (1998)zbMATHCrossRefGoogle Scholar
  19. 19.
    van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging of statecharts specifications. In: Proc. of ICSE 2007, pp. 54–63 (2007)Google Scholar
  21. 21.
    Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance between Trees and Related Problems. SIAM Journal of Computing 18(6), 1245–1262 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sung, W.-K.: Algorithms in Bioinformatics. Chapman&Hall/CRC (2010)Google Scholar
  23. 23.
    Esgin, E., Senkul, P.: Delta Analysis: A Hybrid Quantitative Approach for Measuring Discrepancies between Business Process Models. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 296–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eren Esgin
    • 1
  • Pınar Karagoz
    • 2
  1. 1.Informatics InstituteMiddle East Technical UniversityTurkey
  2. 2.Computer Engineering DepartmentMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations