Simulating a Collective Intelligence Approach to Student Team Formation

  • Juan M. Alberola
  • Elena del Val
  • Victor Sanchez-Anguix
  • Vicente Julian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


Teamwork is now a critical competence in the higher education area, and it has become a critical task in educational and management environments. Unfortunately, looking for optimal or near optimal teams is a costly task for humans due to the exponential number of outcomes. For this reason, in this paper we present a computer-aided policy that facilitates the automatic generation of near optimal teams based on collective intelligence, coalition structure generation, and Bayesian learning. We carried out simulations in hypothetic classroom scenarios that show that the policy is capable of converging towards the optimal solution as long as students do not have great difficulties evaluating others.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberola, J.M., Julian, V., Garcia-Fornes, A.: Multidimensional Adaptation in MAS Organizations. IEEE Trans. Syst. Man Cybern. Part B-Cybern., 1–12 (2012)Google Scholar
  2. 2.
    Belbin, R.M.: Team roles at work. Routledge (2010)Google Scholar
  3. 3.
    Christodoulopoulos, C.E., Papanikolaou, K.A.: A group formation tool in an e-learning context. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, vol. 2, pp. 117–123 (2007)Google Scholar
  4. 4.
    De Vries, M.F.: High-performance teams: Lessons from the pygmies. Organizational Dynamics 27(3), 66–77 (2000)CrossRefGoogle Scholar
  5. 5.
    Graf, S., Bekele, R.: Forming heterogeneous groups for intelligent collaborative learning systems with ant colony optimization. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 217–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Grigorenko, E., Sternberg, R.: Styles of thinking, abilities, and academic performance. Exceptional Children 63(3), 295–312 (1997)Google Scholar
  7. 7.
    Hansen, R.S.: Benefits and problems with student teams: Suggestions for improving team projects. Journal of Education for Business 82(1), 11–19 (2006)CrossRefGoogle Scholar
  8. 8.
    Higgs, M., Pewina, U., Ploch, J.: Influence of team composition and task complexity on team performance. Team Performance Management 11(7/8), 227–250 (2005)CrossRefGoogle Scholar
  9. 9.
    Johnson, D.W., Johnson, R.T.: An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher 38(5), 365–379 (2009)CrossRefGoogle Scholar
  10. 10.
    Johnson, D.W., Johnson, R.T., Smith, K.: The state of cooperative learning in postsecondary and professional settings. Educational Psychology Review 19(1), 15–29 (2007)CrossRefGoogle Scholar
  11. 11.
    Lin, Y.-T., Huang, Y.-M., Cheng, S.-C.: An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Computers & Education 55(4), 1483–1493 (2010)CrossRefGoogle Scholar
  12. 12.
    Maffioli, F., Augusti, G.: Tuning engineering education into the european higher education orchestra. European Journal of Engineering Education 28(3), 251–273 (2003)CrossRefGoogle Scholar
  13. 13.
    Morgeson, F.P., Reider, M.H., Campion, M.A.: Selecting individuals in team settings: The importance of social skills, personality characteristics, and teamwork knowledge. Personnel Psychology 58(3), 583–611 (2005)CrossRefGoogle Scholar
  14. 14.
    Ohta, N., Conitzer, V., Ichimura, R., Sakurai, Y., Iwasaki, A., Yokoo, M.: Coalition structure generation utilizing compact characteristic function representations. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 623–638. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pajares, S., Sanchez-Anguix, V., Torreño, A., Esparcia, S.: A novel teaching-learning strategy for teamwork based on agreement technologies. IJCA Proceedings on Design and Evaluation of Digital Content for Education (DEDCE) (1), 21–30 (2011)Google Scholar
  16. 16.
    Ratcheva, V., Vyakarnam, S.: Exploring team formation processes in virtual partnerships. Integrated Manufacturing Systems 12, 512–523 (2001)CrossRefGoogle Scholar
  17. 17.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2010)Google Scholar
  18. 18.
    Tarricone, P., Luca, J.: Employees, teamwork and social interdependence–a formula for successful business? Team Performance Management 8(3/4), 54–59 (2002)CrossRefGoogle Scholar
  19. 19.
    Wang, D.-Y., Lin, S.S., Sun, C.-T.: Diana: A computer-supported heterogeneous grouping system for teachers to conduct successful small learning groups. Computers in Human Behavior 23(4), 1997–2010 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wi, H., Oh, S., Mun, J., Jung, M.: A team formation model based on knowledge and collaboration. Expert Systems with Applications 36(5), 9121–9134 (2009)CrossRefGoogle Scholar
  21. 21.
    Yannibelli, V., Amandi, A.: A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context. Expert Systems with Applications 39(10), 8584–8592 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan M. Alberola
    • 1
  • Elena del Val
    • 1
  • Victor Sanchez-Anguix
    • 1
  • Vicente Julian
    • 1
  1. 1.Departament de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations