An Agent Based Implementation of Proactive S-Metaheuristics

  • Mailyn Moreno
  • Alejandro Rosete
  • Juán Pavón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8073)


This paper presents the use of a multi-agent system for the development of proactive S-Metaheuristics (i.e. single-solution based metaheuristics) derived from Record-to-Record Travel (RRT) and Local Search. The basic idea is to implement metaheuristics as agents that operate in the environment of the optimization process with the goal of avoiding stagnation in local optima by adjusting their parameters and neighborhood. Environmental information about previous solutions is used to determine the best operators and parameters. The proactive adjustment of the neighborhood is based on the identification of the best operators using Fitness Distance Correlation (FDC). The proactive adjustment of the parameters is focused on guarantying a minimal level of acceptance of new solutions. Besides, a simple form of combination of both proactive behaviors is introduced. The system has been validated through experimentation with 28 functions on binary strings.


Metaheuristics Agents Proactivity Local Search RRT FDC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley & Sons (2009)Google Scholar
  2. 2.
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1996)CrossRefGoogle Scholar
  3. 3.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: 6th Int. Conf. on Genetic Algorithms, Pittsburgh, pp. 184–192 (1995)Google Scholar
  4. 4.
    Birattari, M.: Tuning Metaheuristics. SCI, vol. 197. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Yu, E.S.: Social Modeling and i*. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 99–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    González, J.R., Cruz, C., del Amo, I.G., Pelta, D.A.: An adaptive multiagent strategy for solving combinatorial dynamic optimization problems. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO 2011. SCI, vol. 387, pp. 41–55. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A New multiagent Algorithm for Dynamic Continuous optimization. Int. Journal of Applied Metaheuristic Computing 1(1), 16–38 (2010)CrossRefGoogle Scholar
  8. 8.
    Aydin, M.E.: Coordinating metaheuristic agents with swarm intelligence. Journal of Intelligent Manufacturing 23(4), 991–999 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Malek, R.: Collaboration of Metaheuristics Algorithms through a Multi-Agent System. In: Mařík, V., Strasser, T., Zoitl, A. (eds.) HoloMAS 2009. LNCS, vol. 5696, pp. 72–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Li, B., Yu, H., Shen, Z., Miao, C.: Evolutionary Organizational Search. In: 8th Int. Conf. on Autonomous Agents and Multiagent Systems, Budapest, pp. 1329–1330 (2009)Google Scholar
  11. 11.
    Poupaert, E., Deville, Y.: Simulated Annealing with estimated temperature. AI Communications 13(1), 19–26 (2000)Google Scholar
  12. 12.
    Wang, H., Wang, D., Yang, S.: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Computing- A Fusion of Foundations, Methodologies and Applications 13(8-9), 763–780 (2009)CrossRefGoogle Scholar
  13. 13.
    García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study. Journal of Heuristics 15(6), 617–644 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mailyn Moreno
    • 1
  • Alejandro Rosete
    • 1
  • Juán Pavón
    • 2
  1. 1.Facultad de Ingeniería InformáticaInstituto Superior Politécnico “José Antonio Echeverría” (CUJAE)La HabanaCuba
  2. 2.Dep. Ingeniería del Software e Inteligencia ArtificialUniversidad Complutense de MadridSpain

Personalised recommendations