Volume Visualization for Neurovascular Augmented Reality Surgery

  • Marta Kersten-Oertel
  • Simon Drouin
  • Sean J. S. Chen
  • D. Louis Collins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8090)


In neurovascular image-guided surgery, surgeons use pre-operative vascular data sets (from angiography) to guide them. They map information from angiography images onto the patient on the operating room table to localize important vessels. This spatial mapping is complex, time consuming and prone to error. We’ve developed an augmented reality (AR) system to visualize the pre-operative vascular data within the context of a microscope/camera image. Such an AR visualization enhances the surgeon’s field of view with data that is not otherwise readily available (e.g., anatomical data beyond the visible surface or data about the flow of blood through the vessels), and it aids the surgeon to better understand the topology and locations of vessels that lie below the visible surface of the cortex. In this paper, we explore a number of different volume rendering methods for AR visualization of vessel topology and blood flow.


Augmented Reality Camera Image Virtual Object Mixed Reality Augmented Reality System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avery, B., Sandor, C., Thomas, B.: Improving Spatial Perception for Augmented Reality X-Ray Vision. In: IEEE Virtual Reality Conference (VR 2009), pp. 79–82 (March 2009)Google Scholar
  2. 2.
    Bichlmeier, C., Ockert, B., Heining, S.M., Ahmadi, A., Navab, N.: Stepping into the operating theater: ARAV – augmented reality aided vertebroplasty. In: ISMAR, pp. 165–166 (2008)Google Scholar
  3. 3.
    Chen, S.J.S., Kersten-Oertel, M., Drouin, S., Collins, D.L.: Visualizing the path of blood flow in static vessel images for image guided surgery of cerebral arteriovenous malformations. In: Proc. of SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, 8316308316 (February 2012)Google Scholar
  4. 4.
    Drouin, S., Kersten-Oertel, M., Chen, S.J.-S., Collins, D.L.: A Realistic Test and Development Environment for Mixed Reality in Neurosurgery. In: Linte, C.A., Moore, J.T., Chen, E.C.S., Holmes III, D.R. (eds.) AE-CAI 2011. LNCS, vol. 7264, pp. 13–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Edwards, P., Hawkes, D., Hill, D., Jewell, D., Spink, R., Strong, A., Gleeson, M.: Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. J. Image Guid. Surg. 1, 172–178 (1995)CrossRefGoogle Scholar
  6. 6.
    Glossop, N., Wang, Z.: Projection augmented reality system for computer-assisted surgery. In: CARS, vol. 1256, pp. 65–71 (2003)Google Scholar
  7. 7.
    Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Computerized Medical Imaging and Graphics 37(2), 98–112 (2013)CrossRefGoogle Scholar
  8. 8.
    Kersten-Oertel, M., Jannin, P., Collins, D.L.: DVV: A Taxonomy for Mixed Reality Visualization in Image Guided Surgery. IEEE Transactions on Visualization and Computer Graphics 18(2), 332–352 (2012)CrossRefGoogle Scholar
  9. 9.
    Kersten-Oertel, M., Chen, S.J.S., Collins, D.L.: A Comparison of Depth Enhancing Perceptual Cues for Vessel Visualization in Neurosurgery. CARS 7(1), 166–167 (2012)Google Scholar
  10. 10.
    Konishi, K., Hashizume, M., Nakamoto, M., Kakeji, Y., Yoshino, I., Taketomi, A., Sato, Y., Tamura, S., Maehara, Y.: Augmented reality navigation system for endoscopic surgery based on three-dimensional ultrasound and computed tomography: Application to 20 clinical cases. In: CARS, vol. 1281, pp. 537–542 (2005)Google Scholar
  11. 11.
    Lerotic, M., Chung, A.J., Mylonas, G.P., Yang, G.Z.: pq-space Based Non-Photorealistic Rendering for Augmented Reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Mischkowski, R.A., Zinser, M.J., Kübler, A.C., Seifert, U., Zöller, J.: Clinical and experimental evaluation of an augmented reality system in craniomaxillofacial surgery. In: CARS, vol. 1281, pp. 565–570 (2005)Google Scholar
  13. 13.
    Osborn, A.: Diagnostic Cerebral Angiography, 2nd edn. Lippincott Williams & Wilkins (1999)Google Scholar
  14. 14.
    Paul, P., Fleig, O., Jannin, P.: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE T. Med. Imaging 24(11) (2005)Google Scholar
  15. 15.
    Ropinski, T., Steinicke, F., Hinrichs, K.: Visually supporting depth perception in angiography imaging. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 93–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Scheuering, M., Schenk, A., Schneider, A., Preim, B., Greiner, G.: Intraoperative augmented reality for minimally invasive liver interventions. In: SPIE Med. Imag., vol. 5029, pp. 407–417 (2003)Google Scholar
  17. 17.
    Suzuki, N., Hattori, A., Tanoue, K., Ieiri, S., Konishi, K., Tomikawa, M., Kenmotsu, H., Hashizume, M.: Scorpion shaped endoscopic surgical robot for NOTES and SPS with augmented reality functions. In: Liao, H., "Eddie" Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 541–550. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Wieczorek, M., Aichert, A., Kutter, O., Bichlmeier, C., Heining, R., Euler, E., Navab, N.: GPU-accelerated rendering for medical augmented reality in minimally-invasive procedures. In: BVM (2010)Google Scholar
  19. 19.
    Volonté, F., Pugin, F., Bucher, P., Sugimoto, M., Ratib, O., Morel, P.: Augmented reality and image overlay navigation with osirix in laparoscopic and robotic surgery: not only a matter of fashion. J. Hepatobiliary Pancreat. Sci. 18, 506–509 (2011)CrossRefGoogle Scholar
  20. 20.
    Yamaguchi, S., Ohtani, T., Yatani, H., Sohmura, T.: Augmented reality system for dental implant surgery. In: Shumaker, R. (ed.) VMR 2009. LNCS, vol. 5622, pp. 633–638. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marta Kersten-Oertel
    • 1
  • Simon Drouin
    • 1
  • Sean J. S. Chen
    • 1
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging Center, MNIMcGill UniversityMontrealCanada

Personalised recommendations