Advertisement

Quantized Local Edge Distribution: A Descriptor for B-mode Ultrasound Images

  • Wing-Yin Chan
  • Yim-Pan Chui
  • Pheng-Ann Heng
Conference paper
  • 1.9k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8090)

Abstract

This paper presents an illumination invariant, histogram equalization invariant, rotation-robust and spatially stable texture descriptor for B-mode ultrasound images. We design a new edge-encoding descriptor that captures edge distributions of ultrasound textures. The distribution of edges categorized by their strength forms a signature of a specific textural pattern. Oriented edges are first quantized into different levels of salience according to local contrast and then aggregated to polar bins. A distance function that incorporates with our descriptor for effective texture comparison is introduced. The performance of the proposed descriptor is evaluated by various experiments.

Keywords

B-mode ultrasound image image descriptor edge statistic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. on Ultrason., Ferroelect. and Freq. Control 47(3) (2000)Google Scholar
  2. 2.
    Bouhlel, N., Sevestre-Ghalila, S.: Nakagami markov random field as texture model for ultrasound rf envelope image. Computers in Biology and Medicine 39(6) (2009)Google Scholar
  3. 3.
    Wachinger, C., Klein, T., Navab, N.: Locally adaptive nakagami-based ultrasound similarity measures. Ultrasonics 52(4), 547–554 (2012)CrossRefGoogle Scholar
  4. 4.
    Kim, N., Amin, V., Vilson, D., Rouse, G., Udpa, S.: Ultrasound image texture analysis for characterizing intramuscular fat content of live beef cattle. Ultrason. Imaging 20(3), 191–205 (1998)CrossRefGoogle Scholar
  5. 5.
    Iakovidis, D.K., Keramidas, E.G., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 750–759. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Liao, S., Law, W.K., Chung, C.S.: Dominant local binary patterns for texture classification. Trans. on Img. Proc. 18, 1107–1118 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  8. 8.
    Haralick, R.M., Dinstein, Shanmugam, K.: Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics (3), 610–621 (1973)Google Scholar
  9. 9.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  10. 10.
    Rosin, P.L.: Edges: Saliency measures and automatic thresholding. In: Machine Vision and Application, pp. 139–159 (1997)Google Scholar
  11. 11.
    Qian, R., Huang, T.: A two-dimensional edge detection scheme for general visual processing. Pattern Recognition 1, 595–598 (1994)Google Scholar
  12. 12.
    Treece, G.M., Prager, R.W., Gee, A.H., Berman, L.: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound. Medical Image Analysis 3(2), 141–173 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wing-Yin Chan
    • 1
  • Yim-Pan Chui
    • 1
  • Pheng-Ann Heng
    • 1
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong

Personalised recommendations