Skip to main content

Relational Propagation of Word Sentiment in WordNet

  • Conference paper
Cooperative Design, Visualization, and Engineering (CDVE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8091))

  • 1370 Accesses

Abstract

Sentiment analysis is a relatively new engineering problem in the domain of Natural Language Processing. Its crucial tool are sentiment polarities assigned to synsets (synonym sets) corresponding to abstract meanings existing the natural language. Synsets, together with their lexico-semantic relations are the essential components of every WordNet. The main idea of a new approach to sentiment assignment in WordNet based on relational propagation is presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esuli, A., Sebastiani, F.: SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, LREC 2006 (2006)

    Google Scholar 

  2. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    Article  Google Scholar 

  3. Christiane, F.: What is WordNet? Retrieved from Princeton WordNet® (2005), http://wordnet.princeton.edu/

  4. Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21(4), 315–346 (2003)

    Article  Google Scholar 

  5. Baccianella, S., Esuli, A., Sebastiani, F.: SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: Proceedings of the International Conference on Language Resources and Evaluation, LREC (2010)

    Google Scholar 

  6. Kajdanowicz, T., Kazienko, P., Janczak, M.: Collective Classification Techniques: an Experimental Study. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases & Inform. Sys. AISC, vol. 185, pp. 99–108. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Chamlertwat, W., Bhattarakosol, P., Rungkasiri, T., Haruechaiyasak, C.: Discovering Consumer Insight from Twitter via Sentiment Analysis. Journal of Universal Computer Science 18(8), 973–992 (2012)

    Google Scholar 

  8. Piasecki, M., Maziarz, M., Szpakowicz, S.: Approaching plWordNet 2.0. In: Proceedings of the 6th Global Wordnet Conference, GWC 2012 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Misiaszek, A., Kajdanowicz, T., Kazienko, P., Piasecki, M. (2013). Relational Propagation of Word Sentiment in WordNet. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2013. Lecture Notes in Computer Science, vol 8091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40840-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40840-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40839-7

  • Online ISBN: 978-3-642-40840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics