Social Media in Disaster Relief

Usage Patterns, Data Mining Tools, and Current Research Directions
  • Peter M. LandwehrEmail author
  • Kathleen M. Carley
Part of the Studies in Big Data book series (SBD, volume 1)


As social media has become more integrated into peoples’ daily lives, its users have begun turning to it in times of distress. People use Twitter, Facebook, YouTube, and other social media platforms to broadcast their needs, propagate rumors and news, and stay abreast of evolving crisis situations. Disaster relief organizations have begun to craft their efforts around pulling data about where aid is needed from social media and broadcasting their own needs and perceptions of the situation. They have begun deploying new software platforms to better analyze incoming data from social media, as well as to deploy new technologies to specifically harvest messages from disaster situations.


Social Medium Disaster Relief Disaster Response Twitter User Social Media Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pfeffer, J., Carley, K.M.: Social Networks, Social Media, Social Change. In: Nicholson, D.M., Schmorrow, D.D. (eds.) Adv. Des. Cross-Cult. Act. Part Ii, pp. 273–282. CRC Press (2012)Google Scholar
  2. 2.
    Pfeffer, J., Zorbach, T., Carley, K.M.: Understanding online firestorms: Negative word of mouth dynamics in social media networks. J. Mark. Commun. (2013)Google Scholar
  3. 3.
    Moloney, A.: Haiti must act to address housing crisis - Oxfam. Thompson Reuters Found. (2013)Google Scholar
  4. 4.
    Drabek, T.E.: Human System Responses to Disaster: An Inventory of Sociological Findings. Springer, New York (1986)CrossRefGoogle Scholar
  5. 5.
    Dynes, R.R.: Organized Behavior in Disaster. Heath (1970)Google Scholar
  6. 6.
    Shklovski, I., Palen, L., Sutton, J.: Finding community through information and communication technology in disaster response. In: Proc. 2008 ACM Conf. Comput. Support. Coop. Work, pp. 127–136. ACM, San Diego (2008)Google Scholar
  7. 7.
    Shklovski, I., Burke, M., Kiesler, S., Kraut, R.: Technology Adoption and Use in the Aftermath of Hurricane Katrina in New Orleans. Am. Behav. Sci. 53, 1228–1246 (2010), doi:10.1177/0002764209356252CrossRefGoogle Scholar
  8. 8.
    Arcenaux, N., Weiss, A.S.: Seems stupid until you try it: press coverage of Twitter, 2006-9. New Media Soc. 12, 1262–1279 (2010), doi:10.1177/1461444809360773CrossRefGoogle Scholar
  9. 9.
    Sullivan, D.: Tracking Hurricane Sandy News Through Twitter. Mark. Land. (2012)Google Scholar
  10. 10.
    Carr, D.: How Hurricane Sandy Slapped the Sarcasm Out of Twitter, New York Media Decod. (2012)Google Scholar
  11. 11.
    Laird, S.: Sandy Sparks 20 Million Tweets. Mashable (2012)Google Scholar
  12. 12.
    Munro, R., Manning, C.D.: Short message communications: users, topics, and in-language processing. In: Proc. 2nd ACM Symp. Comput. Dev., pp. 1–10. ACM, Atlanta (2012)Google Scholar
  13. 13.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proc. 19th Int. Conf. World Wide Web, pp. 591–600. ACM, Raleigh (2010)Google Scholar
  14. 14.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proc. 9th Webkdd 1st Sna-Kdd 2007 Work. Web Min. Soc. Netw. Anal., pp. 56–65. ACM, San Jose (2007)Google Scholar
  15. 15.
    Naaman, M., Boase, J., Lai, C.-H.: Is it really about me?: message content in social awareness streams. In: Proc. 2010 ACM Conf. Comput. Support. Coop. Work, Cscw, pp. 189–192. ACM, Savannah (2010)Google Scholar
  16. 16.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proc. Fourth ACM Int. Conf. Web Search Data Min., pp. 65–74. ACM, Hong Kong (2011)CrossRefGoogle Scholar
  17. 17.
    Starbird, K., Palen, L., Hughes, A.L., Vieweg, S.E.: Chatter on the red: what hazards threat reveals about the social life of microblogged information. In: Proc. 2010 ACM Conf. Comput. Support. Coop. Work, pp. 241–250. ACM, Savannah (2010)Google Scholar
  18. 18.
    Sinnappan, S., Farrell, C., Stewart, E.: Priceless Tweets! A Study on Twitter Messages Posted During Crisis: Black Saturday. In: Proc. 2010 Australas. Conf. Inf. Syst. Acis (2010)Google Scholar
  19. 19.
    Qu, Y., Huang, C., Zhang, P., Zhang, J.: Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake. In: Proc. Acm 2011 Conf. Comput. Support. Coop. Work, Cscsw, pp. 25–34. ACM, Hangzhou (2011)Google Scholar
  20. 20.
    Vieweg, S.E.: Situational Awareness in Mass Emergency: A Behavioral and Linguistic Analysis of Microblogged Communications. University of Colorado at Boulder (2012)Google Scholar
  21. 21.
    Sutton, J.: Twittering Tennessee: Distributed Networks and Collaboration Following a Technological Disaster. In: Proc. 7th Int. Conf. Inf. Syst. Crisis Response Manag. (2010)Google Scholar
  22. 22.
    Starbird, K., Palen, L. (How) will the revolution be retweeted?: information diffusion and the 2011 Egyptian uprising. In: Proc. ACM 2012 Conf. Comput. Support. Coop. Work, Cscw, pp. 7–16. ACM, Seattle (2012)Google Scholar
  23. 23.
    Centola, D., Macy, M.: Complex Contagions and the Weakness of Long Ties. Am. J. Sociol. 113, 702–734 (2007)CrossRefGoogle Scholar
  24. 24.
    NPR Staff, “Distant Witness”: Social Media’s “Journalism Revolution.” Talk Naton (2013) Google Scholar
  25. 25.
    @TwitterMedia NPR’s Andy Carvin Uses Twitter to Debunk A Hoax. #OnlyOnTwitterGoogle Scholar
  26. 26.
    Kaczynski, A.: How One Well-Connected Pseudonymous Twitter Spread Fake News About Hurricane Sandy. Buzzfeed Polit (2012)Google Scholar
  27. 27.
    Stuef, J.: The Man Behind @ComfortablySmug, Hurricane Sandy’s Worst Twitter Villain. Buzzfeed Fwd. (2012)Google Scholar
  28. 28.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we RT? In: Proc. First Work. Soc. Media Anal. Soma, pp. 71–79. ACM, Washington D.C. (2010)Google Scholar
  29. 29.
    Madrigal, A.C.: It Wasn’t Sunil Tripathi: The Anatomy of a Misinformation Disaster. The Atlantic (2013)Google Scholar
  30. 30.
    Weinstein, A.: Everybody Named the Wrong Boston Suspects Last Night and Promptly Forgot. Gawker (2013)Google Scholar
  31. 31.
    Martin, E.: Reflections on the Recent Boston Crisis. Reddit Blog (2013)Google Scholar
  32. 32.
    Keller, J.: How Boston Police Won the Twitter Wars During the Marathon Bomber Hunt. Bloom. Bussinessweek (2013)Google Scholar
  33. 33.
    Mission 4636, Collaborating organizations and History. Mission 4636 (2010)Google Scholar
  34. 34.
    Harvard Humanitarian Initiative, Disaster Relief 2.0: The future of Information Sharing in Humanitarian Emergencies. Harvard Humanitarian Initiative, UN Office for the Coordination of Humanitarian Affairs, United Nations Foundation (2011)Google Scholar
  35. 35.
    Liu, S.B., Palen, L., Sutton, J., et al.: In search of the bigger picture: The emergent role of online photo sharing in times of disaster. In: Proc. 5th Int. Conf. Inf. Syst. Crisis Response Manag. (2008)Google Scholar
  36. 36.
    Cohen, S.E.: Sandy Marked a Shift for Social Media Use in Disasters. Emerg. Manag. (2013)Google Scholar
  37. 37.
    St. Denis, L.A., Hughes, A.L., Palen, L.: Trial by Fire: The Deployment of Trusted Digital Volunteers in the 2011 Shadow Lake Fire. In: Proc. 9th Int. Conf. Inf. Syst. Crisis Response Manag. (2012)Google Scholar
  38. 38.
    Reuter, S.: What is a Virtual Operations Support Team? Idisaster 20 (2012)Google Scholar
  39. 39.
    Stephens, K.: Understanding VOSTs (Virtual Operations Support Teams) Hint: It’s All About Trust. West. Mass Smem (2012)Google Scholar
  40. 40., About. Virtual Oper. Support Group (2011)Google Scholar
  41. 41.
    Panagiotopoulos, P., Ziaee Bigdeli, A., Sams, S.: "5 Days in August" – How London Local Authorities Used Twitter During the 2011 Riots. In: Scholl, H.J., Janssen, M., Wimmer, M.A., Moe, C.E., Flak, L.S. (eds.) EGOV 2012. LNCS, vol. 7443, pp. 102–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  42. 42.
    Sarcevic, A., Palen, L., White, J., et al.: “Beacons of hope” in decentralized coordination: learning from on-the-ground medical twitterers during the 2010 Haiti earthquake. In: Proc. ACM 2012 Conf. Comput. Support. Coop. Work, Cscw, pp. 47–56. ACM, Seattle (2012)Google Scholar
  43. 43.
    Munro, R.: Crowdsourcing and the crisis-affected community: Lessons learned and looking forward from Mission 4636. Inf. Retr. 16, 210–266 (2013), doi:10.1007/s10791-012-9203-2CrossRefGoogle Scholar
  44. 44.
    Okolloh, O.: Ushahidi, or “testimony”: Web 2.0 tools for crowdsourcing crisis information. Particip. Learn. Action 59, 65–70 (2009)Google Scholar
  45. 45.
    Neubig, G., Yuichiroh, M., Masato, H., Koji, M.: Safety Information Mining — What can NLP do in a disaster—. In: Proc. 5th Int. Jt. Conf. Nat. Lang. Process. Asian Federation of Natural Language Processing, Chiang Mai, Thailand, pp. 965–973 (2011)Google Scholar
  46. 46.
    Kumar, S., Barbier, G., Abbasi, M.A., Liu, H.: TweetTracker: An Analysis Tool for Humanitarian and Disaster Relief. In: Proc. 2011 Int. Aaai Conf. Weblogs Soc. Media, pp. 661–662. AAAI, Barcelona (2011)Google Scholar
  47. 47.
    Carley, K.M., Reminga, J., Storrick, J., Columbus, D.: ORA User’s Guide, Carnegie Mellon University, School of Computer Science, Institute for Software Research, Pittsburgh, Pennsylvania (2013)Google Scholar
  48. 48.
    Carley, K.M., Columbus, D.: Basic Lessons in ORA and AutoMap 2011. Carnegie Mellon University, Pittsburgh (2011)Google Scholar
  49. 49.
    Carley, K.M., Pfeffer, J.: Dynamic Network Analysis (DNA) and ORA. Adv. Des. Cross-Cult. Act. Part (2012)Google Scholar
  50. 50.
    Costa, B., Boiney, J.: Social Radar. MITRE, McLean, Virginia, USA (2012)Google Scholar
  51. 51.
    Mathieu, J., Fulk, M., Lorber, M., et al.: Social Radar Workflows, Dashboards, and Environments. MITRE, Bedford (2012)Google Scholar
  52. 52.
    Schmerl, B., Garlan, D., Dwivedi, V., et al.: SORASCS: a case study in SOA-based platform design for socio-cultural analysis. In: Proc. 33rd Int. Conf. Softw. Eng., pp. 643–652. ACM, Waikiki (2011)Google Scholar
  53. 53.
    Garlan, D., Schmerl, B., Dwivedi, V., et al.: Specifying Workflows in SORASCS to Automate and Share Common HSCB Processes. In: Proc. Hscb Focus. Integrating Soc. Sci. Theory Anal. Methods Oper. Use (2011), doi: Scholar
  54. 54.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 Data-Driven Documents. IEEE Trans. Vis. Comput. Graph. 17, 2301–2309 (2011), doi:10.1109/TVCG.2011.185CrossRefGoogle Scholar
  55. 55.
    Bostock, M., Carter, S.: Wind Speeds Along Hurricane Sandy’s Path - Interactive Feature, New York (2012)Google Scholar
  56. 56.
    Bostock, M., Ericson, M., Leonhardt, D., Marsh, B.: Across U.S. Companies, Tax Rates Vary Greatly, New York (2013)Google Scholar
  57. 57.
    Bostock, M., Bradsher, K.: China Still Dominates, but Some Manufacturers Look Else-where, New York (2013)Google Scholar
  58. 58.
    Carvin, A.: Andy Carvin’s Social Stories. Andy Carvins Soc. StoriesGoogle Scholar
  59. 59.
    Lin, J., Snow, R., Morgan, W.: Smoothing techniques for adaptive online language models: topic tracking in tweet streams. In: Proc. 17th Acm Sigkdd Int. Conf. Knowl. Discov. Data Min., pp. 422–429. ACM, San Diego (2011)CrossRefGoogle Scholar
  60. 60.
    Martin, M.K., Pfeffer, J., Carley, K.M.: Network text analysis of conceptual overlap in interviews, newspaper articles and keywords. Soc. Netw. Anal. Min. (forthcoming)Google Scholar
  61. 61.
    Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Now Publishers (2008)Google Scholar
  62. 62.
    Carley, K.M., Pfeffer, J., Morstatter, F., et al.: Near Real Time Assessment of Social Media Using Geo-Temporal Network Analytics. In: Proc. 2013 Ieeeacm Int. Conf. Adv. Soc. Networks Anal. Min. (2013)Google Scholar
  63. 63.
    Schroeder, S.: Google Launches Crisis Map for Hurricane Sandy. Mashable (2012)Google Scholar
  64. 64.
    Abbasi, M.-A., Kumar, S., Filho, J.A.A., Liu, H.: Lessons Learned in Using Social Media for Disaster Relief - ASU Crisis Response Game (2012)Google Scholar
  65. 65.
    Carley, K.M., Columbus, D., Landwehr, P.: AutoMap User’s Guide, Carnegie-Mellon University, School of Computer Science, Institute for Software Research, Pittsburgh, Pennsylvania (2013)Google Scholar
  66. 66.
    Gimpel, K., Schneider, N., O’Connor, B., et al.: Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments. In: Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang. Technol. (2011)Google Scholar
  67. 67.
    Owoputi, O., O’Connor, B., Dyer, C., et al.: Part-of-Speech Tagging for Twitter: Word Clusters and Other Advances. Carnegie Mellon University, Machine Learning Department, Pittsburgh, Pennsylvania, USA (2012)Google Scholar
  68. 68.
    Woolf, S.H.: The Meaning of Translational Research and Why It Matters. J. Am. Med. Assoc. 299, 211–213 (2008), doi:10.1001/jama.2007.26CrossRefGoogle Scholar
  69. 69.
    Kipper Schuler, K.: VerbNet: A broad-coverage, comprehensive verb lexicon. University of Pennsylvania (2005)Google Scholar
  70. 70.
    Fellbaum, C.: WordNet: an electronic lexical database. The MIT Press (1998)Google Scholar
  71. 71.
    Verma, S., Vieweg, S.E., Corvey, W.J., et al.: Natural Language Processing to the Rescue? Extracting “Situational Awareness” Tweets During Mass Emergency. In: Proc. 2011 Int. Aaai Conf. Weblogs Soc. Media (2011)Google Scholar
  72. 72.
    Starbird, K., Muzny, G., Palen, L.: Learning from the Crowd: Collaborative Filtering Techniques for Identifying On-the-Ground Twitterers during Mass Disruptions. In: Proc. 9th Int. Conf. Inf. Syst. Crisis Response Manag. Iscram (2012)Google Scholar
  73. 73.
    Settles, B.: Closing the loop: fast, interactive semi-supervised annotation with queries on features and instances. In: Proc. Conf. Empir. Methods Nat. Lang., pp. 1467–1478. Association for Computational Linguistics, Edinburgh (2011)Google Scholar
  74. 74.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. Proc. 19th Int. Conf. World Wide Web, pp. 851–860. ACM, Raleigh (2010)Google Scholar
  75. 75.
    Carneiro, H.A., Mylonakis, E.: Google Trends: A Web-Based Tool for Real-Time Surveillance of Disease Outbreaks. Clin. Infect Dis. 49, 1557–1564 (2009), doi:10.1086/630200CrossRefGoogle Scholar
  76. 76.
    Fontugne, R., Cho, K., Won, Y., Fukuda, K.: Disasters seen through Flickr cameras. In: Proc. Spec. Work. Internet Disasters, pp. 1–10. ACM, Tokyo (2011)CrossRefGoogle Scholar
  77. 77.
    Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in the clouds: toward evaluation studies of tagclouds. In: Proc. Sigchi Conf. Hum. Factors Comput. Syst., pp. 995–998. ACM, San Jose (2007)CrossRefGoogle Scholar
  78. 78.
    Bernstein, M.S., Suh, B., Hong, L., et al.: Eddi: interactive topic-based browsing of social status streams. In: Proc. 23rd Annu. ACM Symp. User Interface Softw. Technol., pp. 303–312. ACM, New York (2010)Google Scholar
  79. 79.
    Kas, M., Suh, B.: Visual Summarization for Topical Clusters in Twitter Streams (forthcoming, 2013)Google Scholar
  80. 80.
    Shahaf, D., Guestrin, C., Horvitz, E.: Trains of thought: generating information maps. In: Proc. 21st Int. Conf. World Wide Web, pp. 899–908. ACM, Lyon (2012)CrossRefGoogle Scholar
  81. 81.
    Kamvar, S.D., Harris, J.: We feel fine and searching the emotional web. In: Proc. Fourth ACM Int. Conf. Web Search Data Min., pp. 117–126. ACM, Hong Kong (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations