Mining Periodicity from Dynamic and Incomplete Spatiotemporal Data

  • Zhenhui LiEmail author
  • Jiawei Han
Part of the Studies in Big Data book series (SBD, volume 1)


As spatiotemporal data becomes widely available, mining and understanding such data have gained a lot of attention recently. Among all important patterns, periodicity is arguably the most frequently happening one for moving objects. Finding periodic behaviors is essential to understanding the activities of objects, and to predict future movements and detect anomalies in trajectories. However, periodic behaviors in spatiotemporal data could be complicated, involvingmultiple interleaving periods, partial time span, and spatiotemporal noises and outliers. Even worse, due to the limitations of positioning technology or its various kinds of deployments, real movement data is often highly incomplete and sparse. In this chapter, we discuss existing techniques to mine periodic behaviors from spatiotemporal data, with a focus on tackling the aforementioned difficulties risen in real applications. In particular, we first review the traditional time-series method for periodicity detection. Then, a novelmethod specifically designed to mine periodic behaviors in spatiotemporal data, Periodica, is introduced. Periodica proposes to use reference spots to observe movement and detect periodicity from the in-and-out binary sequence. Then, we discuss the important issue of dealing with sparse and incomplete observations in spatiotemporal data, and propose a new general framework Periodo to detect periodicity for temporal events despite such nuisances.We provide experiment results on real movement data to verify the effectiveness of the proposed methods. While these techniques are developed in the context of spatiotemporal data mining, we believe that they are very general and could benefit researchers and practitioners from other related fields.


Binary Sequence Periodic Pattern Potential Period Periodic Behavior Spatiotemporal Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahdesmäki, M., Lähdesmäki, H., Gracey, A., Yli-Harja, O.: Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinformatics 8(1), 233 (2007)CrossRefGoogle Scholar
  2. 2.
    Bar-Dvaid, S., Bar-David, I., Cross, P.C., Ryan, S.J., Getz, W.M.: Methods for assessing movement path recursion with application to african buffalo in south africa. Ecology 90 (2009)Google Scholar
  3. 3.
    Berberidis, C., Aref, W.G., Atallah, M.J., Vlahavas, I.P., Elmagarmid, A.K.: Multiple and partial periodicity mining in time series databases. In: Proc. 2002 European Conference on Artificial Intelligence, ECAI 2002 (2002)Google Scholar
  4. 4.
    Cao, H., Mamoulis, N., Cheung, D.W.: Discovery of periodic patterns in spatiotemporal sequences. IEEE Transactions on Knowledge and Data Engineering 19(4), 453–467 (2007)CrossRefGoogle Scholar
  5. 5.
    Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Periodicity detection in time series databases. IEEE Trans. Knowl. Data Eng. 17(7) (2005)Google Scholar
  6. 6.
    Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Warp: Time warping for periodicity detection. In: Proc. 2005 Int. Conf. Data Mining, ICDM 2005 (2005)Google Scholar
  7. 7.
    Glynn, E.F., Chen, J., Mushegian, A.R.: Detecting periodic patterns in unevenly spaced gene expression time series using lomb-scargle periodograms. Bioinformatics (2005)Google Scholar
  8. 8.
    Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: Proc. 1999 Int. Conf. Data Engineering (ICDE 1999), Sydney, Australia, pp. 106–115 (April 1999)Google Scholar
  9. 9.
    Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related databases. In: Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD 1998), York City, NY, pp. 214–218 (August 1998)Google Scholar
  10. 10.
    Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. In: Proc. 2008 Int. Conf. Data Engineering, ICDE 2008 (2008)Google Scholar
  11. 11.
    Junier, I., Herisson, J., Kepes, F.: Periodic pattern detection in sparse boolean sequences. Algorithms for Molecular Biology (2010)Google Scholar
  12. 12.
    Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: Proc. 2010 ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD 2010), Washington D.C. (July 2010)Google Scholar
  13. 13.
    Liang, K.-C., Wang, X., Li, T.-H.: Robust discovery of periodically expressed genes using the laplace periodogram. BMC Bioinformatics 10(1), 15 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liao, L., Fox, D., Kautz, H.: Location-based activity recognition using relational markov networks. In: Proc. 2005 Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 773–778 (2005)Google Scholar
  15. 15.
    Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science (1976)Google Scholar
  16. 16.
    Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown periods. In: Proc. 2001 Int. Conf. Data Engineering (ICDE 2001), Heidelberg, Germany, pp. 205–214 (April 2001)Google Scholar
  17. 17.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.: Mining, indexing, and querying historical spatiotemporal data. In: Proc. 2004 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD 2004), Seattle, WA, pp. 236–245 (August 2004)Google Scholar
  18. 18.
    Priestley, M.B.: Spectral Analysis and Time Series. Academic Press, London (1981)zbMATHGoogle Scholar
  19. 19.
    Scargle, J.D.: Studies in astronomical time series analysis. ii - statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal (1982)Google Scholar
  20. 20.
    Schimmel, M.: Emphasizing difficulties in the detection of rhythms with lomb-scargle periodograms. Biological Rhythm Research (2001)Google Scholar
  21. 21.
    Vlachos, M., Yu, P.S., Castelli, V.: On periodicity detection and structural periodic similarity. In: Proc. 2005 SIAM Int. Conf. on Data Mining, SDM 2005 (2005)Google Scholar
  22. 22.
    Wang, C., Parthasarathy, S.: Summarizing itemset patterns using probabilistic models. In: Proc. 2006 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD 2006), pp. 730–735. ACM (2006)Google Scholar
  23. 23.
    Wang, W., Yang, J., Yu, P.S.: Meta-patterns: Revealing hidden periodic patterns. In: Proc. 2001 Int. Conf. Data Mining (ICDM 2001), San Jose, CA (November 2001)Google Scholar
  24. 24.
    Worton, B.J.: Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70 (1989)Google Scholar
  25. 25.
    Xia, Y., Tu, Y., Atallah, M., Prabhakar, S.: Reducing data redundancy in location-based services. In: GeoSensor (2006)Google Scholar
  26. 26.
    Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: A profile-based approach. In: Proc. 2005 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD 2005), Chicago, IL, pp. 314–323 (August 2005)Google Scholar
  27. 27.
    Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series data. In: Proc. 2000 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD 2000), Boston, MA, pp. 275–279 (August 2000)Google Scholar
  28. 28.
    Yang, J., Wang, W., Yu, P.S.: Infominer: mining surprising periodic patterns. In: Proc. 2001 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD 2001), San Francisco, CA, pp. 395–400 (August 2001)Google Scholar
  29. 29.
    Yang, J., Wang, W., Yu, P.S.: Infominer+: Mining partial periodic patterns with gap penalties. In: Proc. 2002 Int. Conf. Data Mining (ICDM 2002), Maebashi, Japan (December 2002)Google Scholar
  30. 30.
    Zhang, M., Kao, B., Cheung, D.W.-L., Yip, K.Y.: Mining periodic patterns with gap requirement from sequences. In: Proc. 2005 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 2005), pp. 623–633 (2005)Google Scholar
  31. 31.
    Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Collaborative location and activity recommendations with gps history data. In: Proceedings of the 19th International Conference on World Wide Web (WWW 2010), pp. 1029–1038. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Pennsylvania State UniversityUniversity ParkUSA
  2. 2.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations